

PYROTO, INC.

Parse-O-Matic™ Software Editions
Version 5.x BETA

Parse-O-Matic
Users Guide

P A R S E - O - M A T I C S O F T W A R E E D I T I O N S

Parse-O-Matic™ Users Guide

Revision 6.1

Copyright  1986-2010 Pyroto, Inc.
17 Glendale Road

Sturbridge, MA 01518
Phone 508.644.8344

Features described may or may not be active in the version of Parse-O-Matic you are using. Some features may require the
purchase of additional licenses, at an additional cost. We endeavor to accurately describe each feature and command, however
mistakes do happen. If you spot one, please let us know so we can update the documentation.

Table of Contents

Introduction .. 9

What is Parse-O-Matic? .. 9

Parse-O-Matic Versus Automatic Converters 9

Why You Need Parse-O-Matic ð An Example 9

Parse-O-Matic to the Rescue! ... 10

How It Works ... 10

Advantages of Parse-O-Matic ... 11

Sample Scripts .. 11

How to Contact Us .. 12

User Interface... 13

An Integrated Development Environment (IDE) 13

Color-coded Development .. 15

Intellisense .. 15

Quick Links, Integrated Reference manuals and Community

sections ... 16

Integrated Reference Manual: ... 17

Community Section: .. 17

Solution Files, Projects and Script Files: 18

Adding a Solution .. 19

Adding a Project.. 19

Adding a script .. 19

Adding input and output files .. 20

Multi-Script Execution ... 20

Debugger .. 21

Results Log ... 23

Watch List ... 24

Bookmark Window .. 24

Visual Style Options .. 25

IDE Options for tailoring the environment 25

Deployables (Enterprise Edition only) ... 28

Exception Handling ... 29

Wildcards .. 29

Stacking Wildcards ... 29

Using the Windows Clipboard ... 30

Using a URL as input .. 30

Scripting ... 31

What is a Script? ... 31

Preparing Your Script .. 32

File Naming Conventions .. 32

Hierarchy ... 32

Scripting Fundamentals .. 35

Values, Literals and Variables ... 35

Array Variables ... 35

Special Variables .. 36

Frequently-Used ... 36

Input/Output .. 37

User Interface ... 37

Miscellaneous ... 38

The $Ignore Variable .. 38

The $Success Variable ... 38

Special Syntax .. 39

Continuation of Long Lines ... 39

Embedding Quotes in Text Literals... 40

Untypeable Characters ... 40

Free and Advanced Scripting .. 41

Sample Scripts .. 41

About Older Parse-O-Matic Applications 42

Data Assignment Commands ... 43

Equals (Set Variable) .. 43

Len .. 44

ParseName ... 44

Plural ... 45

SetFromFile .. 45

SplitCSV .. 46

Data Alteration Commands .. 47

Change ... 47

ChangeCase ... 48

KeepChar .. 48

Padded .. 49

TrimChar ... 49

Output Commands ... 51

Odb ... 51

OutCSV ... 52

OutCSV Init ... 52

Outputting a Field.. 53

OutCSV Nulls .. 53

OutCSV Done and Stop .. 53

OutCSV Control .. 53

Turning Fields On and Off .. 54

Changing the Default Quoting State ... 54

Switchable CSV/Columnar Reports .. 55

OutCSV Examples .. 55

OutEnd .. 56

OutFile .. 56

OutNull .. 56

Output ... 56

OutRuler .. 57

Comparators .. 58

Overview ... 58

Types of Comparators ... 58

Literal Comparators... 59

Examples .. 59

Literal Comparisons and Sort Order ... 59

Numerical Comparators .. 60

Examples .. 60

Numeric Comparisons and Sort Order ... 60

Length Comparators ... 61

Comparing Patterns .. 61

Regular Expressions ... 62

Basic Regular Expressions ... 62

Using the Asterisk ... 62

Advanced Regular Expressions .. 63

Comparison Commands ... 64

Overview ... 64

AlphaNumPatt ... 64

CompareCtrl .. 65

Numeric ... 65

Que ... 66

Positional Commands .. 67

Cols ... 67

FindPosn ... 67

ScanPosn .. 67

The Scanlist .. 68

Accommodating Variation ... 69

Control Settings .. 70

Finding Patterns with ScanPosn ... 72

Decapsulators .. 73

Overview ... 73

Quick Reference ... 73

A Simple Example ... 74

Why Decapsulators are Necessary ... 74

Introduction to Occurrence Numbers .. 74

Sample Application ... 75

Occurrence Number Syntax .. 75

Finding the First and Last Occurrence ... 76

Finding the Next Occurrence .. 76

Positional Decapsulators ... 77

Negative Positional Decapsulators ... 77

Using Positional Decapsulators Safely ... 77

The Plain Decapsulator ... 78

Unsuccessful Searches ... 78

The Control Setting ... 78

The Null Decapsulator ... 79

Why Null Decapsulators Work Differently ... 80

Overlapping Decapsulators ... 80

Parsing Empty Fields .. 81

Decapsulator Commands ... 82

Overview ... 82

Insert ... 82

Overlay .. 82

Parse ... 83

The ñCutò Control Setting .. 83

The ñRelaxedò Control Setting .. 83

Lookup and Database Commands ... 85

Overview ... 85

Lookup .. 85

LookupFile .. 86

MassChange ... 87

ScanFollow ... 87

Advanced Database Connectivity ... 88

SendToDB .. 88

Calculation Commands .. 89

Calc ... 89

CalcReal ... 90

Dec.. 90

Inc ... 91

Rounding ... 91

Date and Time Commands .. 92

Overview ... 92

DateTimeFormat ... 92

Date and Time Format Codes .. 92

Examples .. 93

AddDays ... 93

AddWeekDays .. 93

DayOfTheWeek .. 94

Now ... 94

Binary Conversion Commands ... 95

Overview ... 95

Parse-O-Matic Conversion Codes .. 96

BinaryToText ... 97

CalcBinary ... 98

TextToBinary ... 98

Reporting Commands .. 100

Overview ... 100

LogDb ... 100

LogMsg ... 100

LogMsgLF ... 100

ShowNote ... 101

PlaySound ... 101

Flow Control Commands .. 102

Overview ... 102

Again ... 102

Begin ... 102

Break ... 104

Call .. 104

Continue .. 104

Done ... 104

Else ... 105

End.. 105

Exit .. 105

If .. 106

Otherwise .. 106

Procedure ... 106

Stop... 107

Step Control ... 108

Overview ... 108

Using Step Control .. 108

FileInit and FileDone ... 109

TaskInit and TaskDone ... 109

NextStep ... 109

NextFile ... 110

Manual Read Commands ... 111

Overview ... 111

RecLenZero Scripts .. 111

Using Manual Read for Standard Input File Types 111

Bookmark .. 112

ReadEOF .. 112

ReadFor .. 112

ReadNext .. 112

ReadUntil .. 114

Rewind .. 114

The Config Section ... 115

Overview ... 115

Sample Script .. 115

Execution of the Config Section .. 115

Commands Available in Config ... 116

The $Cfg Variables ... 116

Optional Input Boxes .. 116

File Names .. 117

File Formats .. 117

HTML/HTTPS/FTP for Input files .. 118

Documentation .. 120

ODBC Support (Read/Write) .. 121

Command Prompt & Unattended Operation 122

Command Line Parameters.. 122

Format of a Command Line File .. 123

Batch Files ... 125

Introduction ... 125

The Error Reporting File .. 125

The Log File .. 126

Unattended Operation .. 127

Multi-User Operation .. 129

Technical Issues ... 129

License & Legal Issues .. 130

Free and Basic Editions .. 130

Business and Enterprise Editions ... 130

Scripts ... 130

Deployables .. 130

Security .. 132

Encryption .. 132

Overview ... 132

Limitations ... 132

Encrypting a Script .. 133

Turning off Encryption ... 133

Security Analysis ... 133

Index .. 134

P A R S E - O - M A T I C U S E R M A N U A L — I N T R O D U C T I O N

9

Introduction

What is Parse-O-Matic?

Parse-O-Matic is data processing technology from Pyroto, Inc. It is used by programs
such as the Parse-O-Matic Free Edition, Parse-O-Matic Basic Edition,
Parse-O-Matic Business Edition and Parse-O-Matic Enterprise Edition— our
programmable file-parsers.

Parse-O-Matic (all editions) is a programmable file-parser. It can help you out in
countless ways. If you have a file you want to edit, manipulate, or change around, this
may be just the tool you need. Parse-O-Matic can also speed up or automate long,
repetitive editing tasks, including clipboard manipulation.

Parse-O-Matic Versus Automatic Converters

Parse-O-Matic is not an ―automatic file converter‖. It will not, for example, convert
WordPerfect files to MS-Word format, or convert Lotus 1-2-3 Spreadsheets directly to
Excel files — although it can read reports from one program and convert them to
another format (such as comma-delimited), which can be imported by the other
program.

One advantage of this method (as opposed to automatic file conversion) is that you
can create an ―intelligent‖ importing procedure, which can make decisions and modify
data. You could, for example, eliminate certain types of records, tidy up names, convert
case, unify fields, perform calculations, and so on.

Why You Need Parse-O-Matic — An Example

There are plenty of programs out there that have valuable data locked away inside
them. How do you get that data out of one program and into another one?

Some programs provide a feature which ―exports‖ a file into some kind of generic
format. One of the most popular of these formats is known as ―comma-delimited‖
(also known as CSV, which stands for ―Comma-Separated Value‖), which is a text file
in which each data field is separated by a comma. Character strings — which might
themselves contain commas — are surrounded by double quotes. So a few lines from a

Chapter

1

P A R S E - O - M A T I C U S E R M A N U A L — I N T R O D U C T I O N

10

comma-delimited file might look something like this (an export from a hypothetical
database of people who owe your company money):

" JONES","FRED","1234 GREEN AVENUE", "KANSAS CITY","MO",293.64

"SMITH","JOHN","2343 OAK STREET","NEW YORK","NY",22.50

"WILLIAMS ","JOSEPH","23 GARDEN CRESCENT","TORONTO","ON",16.99

Unfortunately, not all programs export or import data in this format. Even more
frustrating is a program that exports data in a format that is almost what you need!

If that's the case, you might decide to spend a few hours in a text editor, modifying the
export file so that the other program can understand it. Or you might write a program
to do the editing for you. Both solutions are time-consuming.

An even more challenging problem arises when a program which has no export
capability does have the ability to "print" reports to a file. You can write a program to
read these files and convert them to something you can use, but this can be a lot of
work!

Parse-O-Matic to the Rescue!

Parse-O-Matic reads a file, interprets the data, and outputs the result to another file. It
can help you ―boil down‖ data to its essential information. You can also use it to
convert nearly compatible import files, or generate printable reports.

How It Works

To process data with Parse-O-Matic, you need three things:

1. The Parse-O-Matic program

2. A Parse-O-Matic script file to tell Parse-O-Matic what to do

3. The input file

Input
File

Script
File

Output
File

P A R S E - O - M A T I C U S E R M A N U A L — I N T R O D U C T I O N

11

The input file might be a report or data file from another program, or text captured
from a communications session. Parse-O-Matic can handle many types of input. We've
provided several sample input files. For example, the file ThingsToDo.txt is a
simple ―To Do‖ list. If you want to modify such a file in various ways, Parse-O-Matic
can help!

Parse-O-Matic works by running the entire script every time a new record is loaded
from the input file. You simply need to tell Parse-O-Matic the name of the input,
output and script files and click a button. (You can also automate the process by calling
Parse-O-Matic from the task scheduler, a batch file, or another program.)

Advantages of Parse-O-Matic

Parse-O-Matic has evolved over more than two decades to accomplish a single task:
extracting and manipulating data contained in ―flat‖ files. Its scripts are written with a
loopless, top-to-bottom rationale so that you do not have to spend time writing code
to load each record from the input file — Parse-O-Matic handles that for you.

In addition, you do not have to declare variables, and the extraction commands (such
as Parse and ScanPosn) are extremely powerful — designed specifically for the
challenges that arise when trying to extract data from files.

Some of our clients have told us that they save hundreds of dollars in labor costs every
time they write a Parse-O-Matic script instead of using a traditional programming
language.

Once you have mastered Parse-O-Matic Scripting, you may find that you are regularly
using it for tasks that would previously have been too time-consuming. Just about
everyone has files that they would like to filter or reformat. Without the right tool these
operations are sometimes too difficult to even attempt. With Parse-O-Matic, though,
they can often be done in just a few minutes.

Sample Scripts

Parse-O-Matic comes with several demonstration scripts. To try one out, start up
Parse-O-Matic. Then, select File, Open, Solution. You‘ll find the solutions in the
Samples subdirectory, which was created when you initially installed the application.

Select one of the Solutions (such as ScriptSample01), then click on the Run
button in the toolbar.

Once processing is complete, you will see the resulting output. You can also double-
click the script in the Solution Explorer window to study the script that you just ran.

In addition to the sample scripts included with Parse-O-Matic, you can find additional
sample scripts in the Pyroto, Inc. Knowledge Base, available at
www.Parse-O-Matic.com.

P A R S E - O - M A T I C U S E R M A N U A L — I N T R O D U C T I O N

12

How to Contact Us

If you have any questions about Parse-O-Matic, you can contact us in the following
ways:

 Voice Line: +1-508-644-8344
Email: support@parseomatic.com
Web Site: www.Parse-O-Matic.com

You can also write to us at the following address:

 Pyroto, Inc., 17 Glendale Road, Sturbridge, MA, U.S.A. 01518

file:///C:/Users/jludwick/Desktop/QuickDesktop/www.Parse%1eO%1eMatic.com

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

13

User Interface

An Integrated Development Environment (IDE)

When you start Parse-O-Matic, the integrated IDE opens up a main window, a side
window and bottom window.

The main window shows your most recent projects. It also shows you the options to
create new projects and run existing projects.

The side window allows you to open the Solutions Explorer for a particular solution.
You can view the details of the solution such as input and output file names, script file
names etc. For each of the solution‘s objects, the properties window shows details on
the solution and project properties along with the Bookmark, Breakpoint and Watch
DS details. These will be explained in the respective sections of bookmark window and
watch list respectively.

The bottom window has four tabs each of these showing the results of the solution,
the debug console window showing errors if any, the bookmark window and the watch
list.

Chapter

2

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

14

An IDE provides the following advantages:

1. User Friendly GUI – the user interface portrays a professional theme and allows
you to change the look and feel of the IDE. It is also quite easy to understand for
first-time users of Parse-O-Matic, especially those who are familiar with other
development environments.

2. Support of multiple, parallel user operations – the multi-window view of the IDE
allows you to run a solution on the one hand, view the properties of script files on
the other and also see the console log for any debugging exceptions. You can
create multiple projects and also set their order of execution.

3. Color-coded development – you can handle scripts in the same way that code is
handled in many commercial IDEs. The Parse-O-Matic IDE provides color-coded
distinction in the various parts of the script code to differentiate between
comments, actual code, code blocks, etc.

4. Deployables: This is a feature available in the Enterprise edition of Parse-O-Matic.
This is similar to an .exe file, which can be run by you without making use of the
Integrated IDE of the Parse-O-Matic program. This is explained in further sections
of this manual.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

15

Color-coded Development

Color coded development is a feature that allows you to easily identify parts of the
code depending on whether the code has comments, looping statements or variables.
With color-coded development:

1. The application highlights the code in such a way that it is easy for you to identify
beginning and ending of a code block, defining variables and reserved words and
distinguishing between the two types and differentiating the files reference in the
script from the actual code. This makes coding the script easier.

2. Another use of color-coded development is in easier maintenance of your code.

3. Color-coding also helps to prevent errors while writing the script. An example
might be that as a developer you might use a reserved word as a variable in the
script code but because reserved words are colored differently from user-defined
variables.

Intellisense

While editing a script file, you can press CTRL-Spacebar after typing the first few
letters of a script command, and you will be shown a list of the parameters and a mini-
help guide to that command.

The features of color-coding in the Parse-O-Matic IDE are:

 Configuration variables always start with $ sign and are marked black

 Code comments always start with ‗;‘ and are marked green

 Looping statements such as if are marked violet in color

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

16

 User variables and printing statements are marked in blue

 Reserved words are also marked in violet color.

 Arrays are marked in maroon color

 Each script has a configuration section with Config and End statements and a
TaskInit and End statement block containing script code

 Number assignments are marked in light golden color

You can expand and collapse code blocks such as the configuration code block and
TaskInit code block.

Quick Links, Integrated Reference manuals and Community sections

These features are visible to you on opening the Parse-O-Matic application.

In the Quick Links section, you can see the following:

View Recent Solution Files – you can view the list of your recent solution files

Create a New Solution File – you can click on this link to create a new solution file

Run a Solution File – you can run a solution file by clicking on this link

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

17

Open a recent Solution File – you can open the most recently used solution files

More information on solution files and other components is explained in the following
sections.

Integrated Reference Manual:

As a user, you can view the reference manuals and tutorials for help on various features
of Parse-O-Matic. These reference manuals provide a quick reference guide to
scripting, a quick start guide for first time users of Parse-O-Matic and a full-fledged
user manual.

Community Section:

In this section, you can view forum discussions and wiki items, once you are connected
to the Internet. You can see the latest forum posts and wiki items in order of their
modified date.

This provides you with additional help and understanding of issues encountered during
the run of Parse-O-Matic. The data is taken from live discussions on the forum and on
Wiki, so this data is always up-to-date.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

18

Solution Files, Projects and Script Files:

A solution comprises of the following:

 A project file – This forms the class files of the input, output, support and
other files. This file has an extension of .ppro.

 An input and an output file – these files comprise of content, which has to be
parsed and content obtained after parsing respectively.

 A script file – this specifies the actions to be performed while parsing the input
file. It is usually written using the scripting features available and explained in
the previous chapters. This file has an extension of .pscr.

 Support Files, Log files and help files – support files are used in addition to the
input files, to run a script and view the parse results. Log files would save the
log results after a solution has been run. Help files can be added to the solution
for understanding and information on the script file.

 The solution file is saved with the extension of .psol and is run if parsing has to
be done on a given set of input files.

The Solution Explorer on the right hand side window shows these objects, when a
solution is created or selected:

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

19

In addition to these files, the solution explorer also shows ‗Processing Parameters‘.
These are settings that you can specify just prior to running solutions.

If you check ―Display after processing‖ under Output file settings, then you can view
the results of the parsing in the output file. If you select ―append to existing file‖, then
the application appends the result of the output to the input file.

The PPS or Processing Parameter Screen is only showed once you start/run/execute a
project. When you check the Display PPS checkbox, Parse-O-Matic shows a separate
window after the processing of script and input file is done. You can also specify what
can be changed through the PPS as is seen from the diagram, namely Script File Name,
Input File Name, Output File Name, Help File Name etc.

Adding a Solution

When you want to create a solution file, you should select File, click on New and select
Solution. Parse-O-Matic asks you to input the solution‘s name, and by default the
solutions are saved under the Solutions Folder. Once you save the details of the new
solution, the application prompts you to add more components to the solution such as
a new project, scripts etc.

Adding a Project

When you add a new solution, the next thing to be added is a project. You will be
prompted with three choices – to add a new project, add an existing project or skipping
the addition of a new project. A project file is needed to compile the results of scripts.
However, if you choose not to add projects but add only scripts, then the application
returns back to the solutions explorer. You have to then manually add projects to the
solution by right clicking on the solution name in the solution explorer.

Adding a script

When a new project has been added, Parse-O-Matic prompts you to add scripts.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

20

You will have three choices – to create the script file with pre-loaded code from the
Parse-O-Matic server, create a blank script or adding the script manually. If you choose
the first option then a script file with basic code is loaded. If a blank script is created,
you need to manually enter all code. If you chose to add script later, then you have to
right click on the project name and add a script.

Adding input and output files

You have to point to the solution explorer to add the input file – the file which is
required to be parsed and add a output file – this file would contain the results of
parsing.

Both of these files can be added manually, else the application will assign an output file
based on the input file specified by you.

Multi-Script Execution

You can add multiple script files to the solution and get multiple outputs at the same
time. This feature allows you to parse one file in multiple ways with multiple scripts to
process at the same time.

As shown below, the sample solution has more than 1 script file and generates output
in more than one way.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

21

Debugger

This feature allows you to debug scripts either before running the solution or
individually. A script can be debugged at the time of creation if you choose to test the
functionality of the script. Based on the debugging results, you may or may not make
changes to the script file. It is also an option for you to write a script completely before
debugging.

The debugging option is optional and it is up to you to debug scripts. You can also set
break points while debugging in order to run the script one step at a time. The Step
Into functionality allows you to do so. This enables you to execute script parts so that
exceptions noted in the debug console window can be noted and if need be, can be
rectified.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

22

The console log window is used to show the error or success message of debugging or
stepping-in the code.

This window also displays additional details, which includes a log of the projects
executed, the names of the scripts executed and whether the execution was a success or
failure. It shows the scripts that have errors and the scripts that have run successfully.

The errors are displayed both in a dialog box and in the debug console window. Errors
would also be displayed in case the script file is debugged before it is completed or in
case of programmatic errors:

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

23

As noted above, Parse-O-Matic shows the error category of the error, the description
of the error, the error code and the line of error. This helps you to locate the cause of
the error and the error itself quite easily. This design is consistent with other
commercial compiler designs and IDE.

Results Log

You can view the results window to locate specific searches within the solutions folder.
This window is accessible through the main toolbar and menu bar.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

24

Watch List

The variables inside a script can be marked and added to the watch list, where you

can see the values for these variables while running a script.

When you click on the watch list, double clicking on the name field allows you to enter
the name of the variable that needs to be tracked through the watch list. When this
feature is used with breakpoints, you can debug scripts effectively and note the
exceptions in detail. If the checkbox for the Special Variable is checked then it means it
is reserved variable like $Data.

Bookmark Window

This window allows you to bookmark folders. For creating a bookmark, you just need
to click on create folder and add it as a bookmark. It is a way of adding a quick

reference for later uses, as you can add the file name and the line inside the file.

You can toggle bookmarks and add them to the bookmark window, by clicking on the
‗Toggle bookmark icon on the right-hand side of the main window. This gets
automatically added to the bookmark window. You can browse through bookmarks as
well, by clicking Prev and Next Bookmark options, next to the Toggle bookmark
icons.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

25

Visual Style Options

The IDE allows you to change the look and feel of the editor. You can choose from
three different visual schemes – default, office 2003 and office 2007 theme.

IDE Options for tailoring the environment

The IDE offers you with some editor options, which can be used to customize the behavior and
appearance of the application when it is used.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

26

You can set the windows to be loaded on starting up Parse-O-Matic.

If you check ―Check for Updates‖ then the application connects to the Internet to
view updates of the program. If you check ― Display Splash Screen‖, then the
application displays a splash screen with Parse-O-Matic logo when you start it.

If you check the boxes for Loading Community, Reference and Quick Links tabs,
these are displayed once you open the application.

You can set appearances for areas of the script, the text options and the control
toolbars and scrollbars of the editor.

If you check indicator area, then the application highlights this in the script file as to
where changes have been made either as a green or golden brown strip on the left.

Checking the word wrap area, allows you to see the editor with words wrapped.

Checking the selection area, allows you to see the selections made on the editor
highlighted by a maroon line on the left.

If you check user area, the editor allows you to set up the user configuration area

If you check line numbers, the editor shows the line numbers in the script code.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

27

Checking changed lines marking, allows you to see lines which have been changed in a
script

In the control tab, if you check horizontal, vertical scrollbars, status bar and XP style
then the application allows these elements to appear in your editor.

In the text tab, if you check the lines wrapping marks, does not show the wrapped line
marks, which appear as dots on the editor.

If you check the indentation block border and guidelines, then the paragraph based
indentations do not appear on your editor

If the column guidelines checkbox is checked then the column wise indentation is not
shown on the editor

If you check the outlining collapsers checkbox then the outline collapse and expand of
the script code is disabled.

If you check the transparent selection box is checked then code indentation is not
shown

You can also set the default behavior of the editor while running.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

28

In the above options, if you check the virtual space box, then the extra space below the
editor and console window is displayed

If you check insert mode, then insert mode in the editor is enabled

If you check view white space then the editor displays the white spaces in the script
code

If you check the word wrap then word wrapped lines are shown on the editor

If you check the group undo option, then you can undo grouping of code blocks

If you check the trim spaces on save option then you can see that extra spaces are
removed from the script code.

If you check the tabs options – tab stops and use tabs, then you can view tabbing of
the script code in the editor along with the tab size set from the drop down

If you select None from the auto indent mode, then no indentation is enabled; if block
is selected then the editor shows block based indentation else if the smart indenting is
selected, then a space-saving editing is shown in the editor.

Deployables (Enterprise Edition only)

This feature is available only in the Enterprise Edition of the Parse-O-Matic software.

A deployable is a stand-alone executable file. It gets created with the Build feature. A

deployable exe is the Parse-O-Matic program (with a different name).

When you run a deployable, it does the following steps.

1. Fetch the current Project's settings (such as combo and check boxes) from the

project file. Even if the PPS is not going to be displayed, the name of the script file,
input file, and so on, is required. Each of these is the first file listed in a list-of-files

(such as the list-of-files named Input Files in Solution Explorer).

2. Show PPS (if Display PPS is true for the Project).

3. When the PPS is showing, you can make some changes and then click Start.

4. If PPS is showing, the application updates the project file so that its list-of-files

(example: Input Files) and check-boxes (such as Display After Processing) match
the combo boxes in the PPS, including each combo box's input box.

5. The application then processes the current Project.

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

29

6. An Error Report window is shown if applicable. Note that at this point the PPS is
not showing, though the progress bar is showing — though it is probably partially

hidden by the Error Report window.

7. If Display After Processing is True, the output file is opened in a Viewer Window.

Exception Handling

Whenever an error occurs during script execution, an Exception window is displayed.
When possible, the exception window will display the offending command or line of
the script file in question. The IDE will also attempt to open up the offending script
file and place the cursor at the location of the problem.

At other occasions, the IDE attempts to show system level errors while running a
solution such as shown below:

Wildcards

Parse-O-Matic lets you process multiple input files in a single operation (i.e. clicking the
Start button only once) by using ―wildcards‖ in the Input File input box.

For example, if you set the Input File box to *.txt then all files with a .txt
extension will be processed.

Here are some more examples:

Wildcard Mask Interpretation

report??.txt ñreportò followed by any two characters, .txt extension

my*.csv ñmyò followed by one or more characters, .csv extension

xyz.??? ñxyzò with any three- character extension

You cannot specify wildcards for the output file. All output goes to a single output file.

Stacking Wildcards

You can specify multiple wildcards by using semicolons, as in this example:

.txt;.me

P A R S E - O - M A T I C U S E R M A N U A L — U S E R I N T E R F A C E

30

This would process input files with the .txt extension (example: xyz.txt) and the
.me extension (example: read.me).

There is almost no limit to the number of wildcards you specify, but bear in mind that
when you stack wildcards you could end up processing the same file more than once.
Consider this example:

.txt;my.txt

This would process all files with a .txt extension, then all files with a .txt
extension where the file name starts with ―my‖. Thus, a file named myfile.txt
would be processed twice.

You cannot specify multiple file names for the output file. All output goes to a single
output file.

Using the Windows Clipboard

Parse-O-Matic lets you process the Windows text clipboard as if it was a regular text
file.

To process the clipboard as the input file, enter Clipboard in the Input File box.

Tip: Most Windows programs let you copy selected text into the clipboard with
Ctrl-C.

You can also send output to the Windows text clipboard as if it was a regular text file.
To send output to the clipboard, enter Clipboard in the Output File box.

Tip: Most Windows programs let you paste text from the clipboard with Ctrl-V.

It is possible to do both at once, processing input data from the clipboard and sending
the resulting output to the clipboard. Of course, after processing, the original contents
of the clipboard will have been overwritten.

Using a URL as input

You can use standard URLs in the Input File box or within your scripts. HTTP,
HTTPS and FTP, amongst others, are supported. Please note that you must make
sure you have enough disk space to hold the downloaded file.

Download files are received in their entirety, before script processing proceeds.

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

31

Scripting

What is a Script?

A script is a set of instructions that analyze data generated by Parse-O-Matic. Every
time Parse-O-Matic has a new line of data, it sends it to the script for further
processing. The script can make changes to the data before sending it to the output file,
or skip the data altogether.

Here is an example of a script:

Change $OutData 'Cat' 'Dog'

OutEnd $OutData

The first line of this script changes the variable $OutData such that every instance of
the word ―Cat‖ is replaced by the word ―Dog‖. The second line then sends the altered
variable to the output file.

Here is another sample script:

Modify
data if
req'd

Insert add'l data if
req'd

Ignore data if
req'd

Data line
is output,

if req'd

Read a
line of

data from
Input File

Chapter

3

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

32

Change $OutData 'Cat' 'Dog'

If $OutData ^ 'Dog' OutEnd $OutData

This is similar to the first example, but it sends data to the output file only if it contains
the word ―Dog‖.

Preparing Your Script

With only two exceptions (the If and Otherwise commands), scripts never contain
more than a single scripting command on each line.

Blank lines are ignored. Lines that start with a semicolon (the ; character) are also

ignored — these are considered comments. You can also put a comment at the end of
a line, following a semicolon. For example:

; --

; This is my script file

; ----------------- ---

If $OutData ^ 'Cow' Done ; Ignore all lines containing the word 'Cow'

OutEnd $OutData ; Output the line

It is traditional to line up end-of-line comments, as shown above. It is not mandatory,
and sometimes it is not possible, but it does make the script easier to read. The
horizontal lines in the example are used only as separators — these too can make a
script easier to read, if used sparingly.

File Naming Conventions

Scripts have a file extension of .pscr Projects, .ppro and Solutions, psol Script

Hierarchy

Script hierarchy is a new concept introduced in version 5. In Parse-O-Matic version 4,
there was just one type of file structure, and that was the single script file. If you
wanted to execute a number of different scripts, in a particular order, then a batch file
had to be used to call Parse-O-Matic those number of times that were needed to run a
script.

In version Parse-O-Matic Version 5, the concept of the Solution, Project and Scripts
was introduced.

A Project can contain one or more script files. A Solution can contain one or more
project files.

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

33

Another feature of the script hierarchy is the Parameter Processing Screen (PPS). The
PPS screen allows a Solution author to be prompted to enter in various values, before a
script is executed.

This can be useful if the script being run needs to be run against input files whose
name might not be known at design time. Another situation where the PPS can be
useful is where the Solution author is not the person who is running the Solution. If
the end-user is not the author of the script, then this feature comes in handy. This is
also where the IDE‘s opening screen, the Quick Links option can be useful to run a
selected solution.

A Snapshot of the Solution Explorer

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

34

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

35

Scripting Fundamentals

Values, Literals and Variables

A value is a parameter for a scripting command. It can be specified in the following
ways:

Example Explanation

'Text' A text string (note the quotes)

15 A number

'15' Another way to represen t a number (i.e. as text)

VarName The name of a variable

VarName[10 20] Substring of a variable (columns 10 to 20 in this

case)

VarName[19] Substring of a variable (a single character)

VarName+ A numeric variable, plus 1 (e.g. MyVar = MyVar+)

VarName- A numeric variable, minus 1 (e.g. MyVar = MyVar -)

VarName(10) An array variable

A ―literal‖ is a parameter in a script command that does not get changed when the
script is running. The first three examples in the table above are literals. Literals are
enclosed in 'quotes' — unless they are numbers, in which case the quotes are optional.

A ―variable‖ is a named spot in your computer's memory that holds some data.
Variables must start with an unaccented letter (A to Z). Case is ignored, so variables
named MyVar, myvar and MYVAR are considered the same.

Substring ranges in square brackets such as MyVar[1 10] must refer to fixed range of
column positions. If the script needs to vary the substring range, you should use the
Cols command.

Array Variables

Array variables are recognized as such because the variable name is immediately
followed by the ―open parenthesis‖ character.

Array indices are all treated as strings. Variable indices are only supported in one-
dimensional arrays. For example, the following are valid:

Variable indices:

Index=1

Begin Index #< 10

 MyArray(Index) = Index * 10

 Inc Index

End

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

36

Literal indices:

MyArray(1,1)=1

MyArray(1,2)=10

MyArray(1,3)=100

MyArray(2,1)=2

MyArray(2,2)=20

MyArray(2,3)=200

Uninitialized array elements are assigned the value contained in the special variable
$NotDefined. By default this contains the value '[ND]', but you can assign a different
value to $NotDefined if you wish.

Special Variables

Parse-O-Matic makes available certain internal variables. You can recognize these as
―special‖ variables because — unlike user-defined variables — these start with a dollar-
sign ($) character.

Because these variables are used by Parse-O-Matic itself, you should avoid altering
them. Your script can either make a copy of a special variable (e.g. MyData =
$OutData), or use commands such as Cols to extract the part you want (e.g. MyData =
Cols $OutData 10 20).

Frequently-Used

Here are the special variables that are used most often.

Special

Variable

Explanation

$OutData Data that the application is sending to the script

$Data The line of input data (see explanation below)

$PrevData The previous line of input data read by the

application

$ReadLines The number of lines (or records) read from the input

file

The $OutData and $Data variables refer to the same thing. In older Parse-O-Matic
applications, such as TextHarvest, the input data (i.e. $Data) is preprocessed by the
application itself before being passed to the script as $OutData. (The variable name
$OutData literally means ―preprocessed data sent as output to the script‖). In such
cases, your script should use $OutData rather than $Data, as it may not contain the
actual input data from the file.

The $OutData variable can usually be altered without causing problems for the
underlying application.

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

37

Input/Output

Here are the special variables related to input and output:

Special Variable Explanation

$ActualIFN Name of the current input file (including path)

$ActualOFN Name of the current output file (including path)

$Append ingOutput Set to 'Y' if output is being added to pre - existing

file

$BytesOutCount Number of bytes sent, so far, to the output file

$ClipboardOutput Set to 'Y' if output will go to the Windows

clipboard

$InputFileBytes Number of bytes (including buffered) read from

input

$OutCSVRec The accumulator string used by the OutCSV command

$Wildcarding

$CfgODBCConnection

Y = Multiple input files; N = Processing only one

file

Set ODBC database connection string

User Interface

Here are the special variables related to the user interface:

Special

Variable

Explanation

$CaptionX Caption for the first option box (usually 'Option

&X')

$CaptionY Caption for the second option box (usually 'Option

&Y')

$CaptionZ Caption for the third option box (usually 'Option

&Z')

$IFNMask What actually appears in the Input File box

$OptionX First options box These variables contain the

values

$OptionY Second options box in the input boxes near the

bottom

$OptionZ

$CfgShowPPSNote

Third options box of the Parsing Parameters

window

Displays custom text on the PPS window

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

38

Miscellaneous

Here are various special variables that do not fit into the previously mentioned
categories:

Special

Variable

Explanation

$AppParms(n) Array of parameters (see application's documentation)

$Compare Dynamic comparator (e.g. If X $Compare Y Done)

$EndOfData See ñManual Read Commandsò

$Ignore See explanation below

$NotDefined Contains the value for uninitialized array variables

$Scrambled 'Y' = script has been scrambled (user cannot view

source)

$StepName Processing step (see application's documentation)

$Success See explanation below

$TestMode Set to 'Y' if the application is running in Test Mode

The $Ignore Variable

The $Ignore special variable is used when a function returns a value but you are not
interested in what that value is. For example:

$Ignor e = Parse MyData '2*/' '3*/' 'Cut'

This removes everything between the second and third slashes in the variable named
MyData. Using $Ignore helps make a script self-documenting. That is to say, if you
place a result in $Ignore, it serves as a reminder that you are not using the information
elsewhere in the script.

You may sometimes get an error message that looks something like this:

Warning: The following variables are referenced only once in ScrMyScript
MyVariable

While this error message is usually caused by a mistyped variable name, it can also
happen if you use a ―throw-away‖ variable to get rid of a value — and only use it that
one time. To avoid getting this message, use the $Ignore variable.

The $Success Variable

Certain commands (such as Overlay and SetFromFile) set a special variable named
$Success. This is set to 'Y' (meaning, ―Yes, it succeeded‖) if the command succeeded
and 'N' (for ―No‖) if it failed.

Consider this script sample:

MyVar = SetFromFile 'MyText.txt'

If $Success = 'N' MyVar = 'No dat a'

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

39

If the SetFromFile command fails — which would happen if the file was not found —
then $Success is set to 'N'. If it succeeds, though, $Success is set to 'Y'.

When a script first runs, $Success is initially set to 'N'. Once a command sets the value
of $Success, it retains its value until set by another command. Because of this, you
should test $Success immediately after the command that sets it. Consider this
situation:

MyVar = SetFromFile 'MyText.txt'

Overlay MyVar 'CUSTOMER' 'Customer'

If $Success = 'N ' then MyVar = 'No data'

The programmer has apparently forgotten that Overlay also sets $Success. A better
approach would be as follows:

MyVar = SetFromFile 'MyText.txt'

If $Success = 'N' MyVar = 'No data'

If $Success = 'Y' Overlay MyVar 'CUSTOMER' 'Custom er'

This example performs the tests and operations in a more logical order.

Special Syntax

Continuation of Long Lines

If a script line is too long for convenient viewing in your text editor, you can continue
it on the next line by using the >> symbol. For example:

CustomerInfo = CustSalutation FirstCustName MiddleCustName >>

 LastCustName '(' CustomerPhoneNumber ')'

You can put comments (i.e. a semicolon followed by some text) after the continuation
symbol, though if you put the continuation symbol after the start of a comment, the
following line of script is considered to be part of the comment.

In the example above, the continuation line was indented by two spaces. This is not
mandatory, but it does serve as a reminder that the line is a continuation.

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

40

Embedding Quotes in Text Literals

Since text literals begin and end with 'quotes', you cannot simply put a quote inside a
text literal. To represent a quote within a text literal, put two quotes in a row. For
example:

MyVar = 'Isn''t ''scripting'' fun?'

This will set MyVar to:

Isn't 'scripting' fun?

Note that each instance of a doubled-up quote has been replaced by a single instance.

Untypeable Characters

You can specify either hexadecimal or decimal representation of bytes when coding a
literal:

MyVar = $0A $0D

MyVar = #10#13

The first example uses hexadecimal notation to define the Carriage Return and
Linefeed characters. The second example uses decimal notation to do the same thing.

You can also mix text and untypeable characters, as in these examples:

MyVar = 'Hello'$0A$0D

MyVar = 'Hello' $0A $0D

MyVar = 'Hello'#010#013

Any of the examples above will set the variable MyVar to 'Hello' followed by the
Carriage Return and Linefeed characters.

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

41

Free and Advanced Scripting

Parse-O-Matic Free Edition lets you use the majority of the scripting language features
at no extra charge. Some of the more powerful language capabilities, however, require
the purchase of a license. These editions are the Parse-O-Matic Basic Edition,
Parse-O-Matic Business Edition and the Parse-O-Matic Enterprise Editions.

If you use an Advanced Scripting command or other higher-edition feature and do not
have the License, the program will display a pop-up window. You can skip over this
window, so you can make sure that the Advancing Scripting command is appropriate
for your requirements. You may try out the Advanced Scripting commands at no
charge for up to 30 days.

You can visit:

http://www.parseomatic.com/

to learn more about obtaining the Parse-O-Matic Basic Edition, as well as the Business
and Enterprise Editions.

Sample Scripts

Parse-O-Matic is delivered with sample Solutions (which typically have the word
Sample in their names).

Here is a list of the sample solutions included with Parse-O-Matic.

Script File Name Input File to Use Adv What is Demonstrated

Sample Solution 01. psol ThingsToDo.txt - Basic techniques

Sample Solution 02. psol ThingsToDo.txt - Basic techniques

Sample Solution 03. psol InputSample01.txt - Basic techniques

Sample Solution 04. psol ToDoListFixed.dat - Fixed - record - length

input

Sample Solution 05. psol ToDoListDelim.dat - Character - delimited

input

SampleAdvSolution01.psol ThingsToDo.txt Y Advanced techniques

SampleAdvSolution02.psol Scr*.txt Y Advanced techniques

PSTMain.psol Thi ngsToDo.txt Y Main scripting

commands

PSTOutCSV.psol ThingsToDo.txt Y OUTCSV command

PSTMR.psol InputSample02.dat Y RecLenZero script

Adv = Uses Advanced Scripting commands

It is best to study these scripts in the order they are listed above.

All of the sample scripts have default input and output file names defined.

In addition to the sample scripts included with Parse-O-Matic, you can find additional
sample scripts in the Pyroto, Inc. Knowledge Base, available at
www.Parse-O-Matic.com.

http://www.parseomatic.com/

P A R S E - O - M A T I C U S E R M A N U A L — S C R I P T I N G

F U N D A M E N T A L S

42

About Older Parse-O-Matic Applications

Parse-O-Matic was originally created in 1985. We have learned a lot about parsing since
that time, and the design of Parse-O-Matic Scripting reflects this.

As our long-time customers have probably noticed by now, Parse-O-Matic Scripts are
similar to the POM files used by our old DOS-based program, but the POM files are
not compatible. For example, the old $FLINE variable is now represented by $Data.
This does not mean that the old DOS-based program is no longer useful. Certain kinds
of operations (such as those performed on binary files) are currently impractical with
Scripting, and some arcane capabilities (such as bit-wise operations and date arithmetic)
are not implemented.

With the release of Version 5, the concept of Solutions and Projects have been
introduced. Also, filename extensions have changed, to better reflect Windows
standards.

Script files created with version 4 can still be used in version 5. Simply copy and paste
in your script into a blank Script file contained within a Solution/Project. It is best not
to simply add your existing version 4.x script file to a project, as file character encoding
has changed.

Those running Parse-O-Matic with batch files should note all command-line
parameters have changed. Also, if your batch files gathered data from your relational
database, you may wish to start using the built-in ODBC connectivity. Similarly, those
processing HTML or FTP‘d files, may wish to switch to the internally available
commands that support those transports and/or data formats.

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A S S I G N M E N T

C O M M A N D S

43

Data Assignment

Commands

Equals (Set Variable)

Format # 1 v1 = v2 [v3 v4 v5]

EXAMPLES MyVar1 = 'Hello' ; Set var to a literal

 MyVar2 = MyVar3 ; Set one var to another

 MyVar4 = OtherVar[10 20] ; Columns 10 to 20

 MyVar5 = 'How ' 'are ' 'you?' ; Append three literals

PURPOSE Sets v1 to v2 (and any other values listed thereafter)

PARAMETERS v1 - Variable being set

 v2 - Value

 v3 - Value (any number of values can be appended)

-OR-

Format # 2 v1 = f2

Example MyVar6 = Cols xyz 5 8 ; Set var from a function

Purpose Sets v1 from a function

Parameters v1 - Variable being set

 f2 - Function (with any parameters it may use)

A ―function‖ is a command that returns a value. The Cols command is an example of a
function, while the OutEnd command is not a function because it does not return a
value.

Chapter

4

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A S S I G N M E N T

C O M M A N D S

44

Len

Format v1 = Len v2 [v3 v4 v5...]

Examples MyVar1 = Len MyVar2 ; If MyVar2 is 'ABC', MyVar1 will

be '3'

 MyVar3 = Len X1 X2 ; Measure total len gth of appended

values

Purpose Sets v1 to the length (number of characters) in v2

Parameters v1 - Variable being set

 v2 - Value being measured

 v3 - Value (any number of values can be appended)

ParseName

ParseName v1 v2 v3 v4 v5 v6 v7

Example ParseName 'John Smith' 'No' addform first middle last

suffix

Purpose Breaks up a name into its component parts

Parameters v1 - The unparsed name

 v2 - Control setting: detect company names?

 v3 - Variable to receive address form (e.g. 'Mister')

 v4 - Variable to receive first name (e.g. 'John')

 v5 - Variable to receive middle name (e.g. 'J.')

 v6 - Variable to receive last name (e.g. 'Smith')

 v7 - Variable to receive suffix (e.g. 'the third')

Controls v2 = Yes/No

ParseName provides some basic capability for breaking up a proper name. The results
cannot be completely accurate because there are so many possible variations. Thus, if
you use ParseName (typically to create a CSV record), you should review the results
afterwards and modify your script to handle exceptions.

In addition, you should not assume that ParseName will return the same results when
using different versions of Parse-O-Matic. The ParseName command is occasionally
updated to improve its ―intelligence‖. ParseName is a handy time-saver, but there are
no definitive rules for this kind of operation.

If the control setting (v2) is set to 'Yes', ParseName can detect many company names,
placing the entire value in v4. This, too, is not entirely reliable. For example, 'John
Jones Enterprises' will be recognized as a company, but 'Les Entreprises John Jones'
(i.e. the company name in French) is not.

Despite its limitations, ParseName is a helpful command: it can greatly reduce the
effort required if you are converting a large list of names.

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A S S I G N M E N T

C O M M A N D S

45

Plural

Format v1 = Plural v2 v3 [v4]

Example Word = Plural 'cat' NumBeasts ; If NumBeasts = 3

returns 'cats'

Purpose Provisionally adds the letter 's' to a word if it is

appropriate

Parameters v1 - Variable being set

 v2 - The word being counte d, which might have an 's'

added

 v3 - The number of v2 items being considered

 v4 - Control setting (Preserve length? Yes/No)

Controls If v4 = 'Yes', we append a space to v1 if the 's' is

omitted.

 This maintains the alignment of columnar output.

Defaults v4 = 'No'

This simple command makes it easy to avoid unattractive ―tentative plurals‖ such as
―item(s)‖. For example:

Items = Plural 'item' ItemCount

OutEnd 'We have ' ItemCount ' Items ' in stock'

If ItemCount is 1, the output reads 'We have 1 item in stock'. For any other number,
an 's' is added. For example: 'We have 3 items in stock'. If ItemCount is a real number
— even 1.0 — an 's' is added, since that is the way it would normally be spoken in
context (e.g. ―The score is one point zero points")

SetFromFile

Format v1 = SetFromFile v2 [v3]

Examples MyVar1 = SetFromFile 'MyFile.txt'

 MyVar2 = SetFromFile 'C: \ Stock \ Greeting.txt'

Purpose Reads data from a file into a variable

Parameters v1 - Variable being set

 v2 - File name

 v3 - Cont rol settings

Controls 'Text' = The file is a text file (may end with Ctrl -

Z)

 'Binary' = The file is a binary file

Defaults v3 = 'Text'

Similar Cmds LookUp

If v3 is not specified, the file is considered to be text, and any end-of-line (CRLF)
characters are stripped from the start and end of v1.

SetFromFile sets the $Success variable to 'Y' if the file was successfully read, 'N'
otherwise.

If the filename (v2) does not specify a path, SetFromFile will use the Search Path to
look for it.

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A S S I G N M E N T

C O M M A N D S

46

In theory, SetFromFile can read in a file that is several billion characters long. In
practice, however, the size of the file you can read in is limited by your computer‘s
memory.

SplitCSV

Format v1 = SplitCSV v2 [v3 [v4]]

Example ParsedCSV = SplitCSV FileD ata

Purpose Converts data in CSV (Comma Separated Value) format

into a format that is much easier to take apart with

the Parse command (using 'Cut Relaxed', for example)

Parameters v1 - Variable being set

 v2 - The CSV data

 v3 - The string with which to r eplace the old delimiter

 v4 - The old delimiter (usually a comma or a semicolon)

Defaults v3 = Carriage - return character (ASCII #13)

 v4 = The comma character

Similar Cmds Parse

SplitCSV parses a line of comma-delimited text, replacing the commas with the new
delimiter (v3). Any double-quotes (") around fields are removed, while doubled-up
quotes ("") are replaced with single ― quotes. For example:

MyVar = '"Mary ""The Parser"" Jones";123.45;"416 - 555 - 1212"'

ParsedCSV = SplitCSV A ' / ' ';'

This would set the ParsedCSV variable to the following value:

Mary "The Parser" Jones / 123.45 / 416 - 555 - 1212

When processing CSV data, bear in mind that in some countries the standard delimiter
is the semicolon (;) because they use a comma as the decimal point.

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A L T E R A T I O N

C O M M A N D S

47

Data Alteration

Commands

Change

Format Change v1 v2 v3 [v4]

Examples Change MyVar 'Cat' 'Dog' ; Change 'Cat' to 'Dog'

 Change MyVar 'Dog' '' ; Remove all 'Dog' strings

Purpose Changes v1 such that every occurrence of v2 is changed

to v3

Parameters v1 - Variable to be changed

 v2 - Value to look for

 v3 - Value to replace it with

 v4 - Control setting

Controls MultiPass/OnePass

Defaults v4 = 'MultiPass'

Similar Cmds ChangeCase, KeepChar, MassChange, Padded, TrimChar

Notes The compar ison is case - sensitive. 'Cat' does not match

'CAT'.

In the default MultiPass mode, the Change command repeats the process until the
value being sought (v2) is no longer found. However, consider this situation:

X = 'ABCD'

Change X 'A' 'AA' 'MultiPass'

The Change command notices that repeating the process would never end (because v3
contains v2), so it only scans v1 once.

Chapter

5

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A L T E R A T I O N

C O M M A N D S

48

ChangeCase

Format v1 = ChangeCase v2 [v3]

Example ChangeCase MyVar 'HardCaps'

Purpose Changes text case (e.g. 'Cat' to ' CAT')

Parameters v1 - Variable being set

 v2 - Original value

 v3 - Control setting

Controls

Original (v2) Control (v3) Result (v1)

'Fred Jones' 'Uppercase' 'FRED JONES'

'FRED Jones' 'Lowercase' 'fred jones'

'fred jones' 'Capitalize' 'Fred Jones'

'FRE D jones' 'Capitalize' 'FRED Jones'

'FRED jones' 'HardCaps' 'Fred Jones'

'WX- XY123' 'HardCaps' 'Wx - Xy123'

'FRED jones' 'NoChange' 'FRED jones'

Defaults v3 = 'Uppercase'

Similar Cmds Change

KeepChar

Format KeepChar v1 v2

Examples KeepChar MyVar1 '/AZ' ; Retain A to Z only

 KeepChar MyVar2 '/$/09/.' ; Retain $, 0 to 9, and

period

 KeepChar MyVar3 '/AZ/az/' ; Retain only letters

 KeepChar MyVar4 '*AZ*az' ; Same as previous example

Purpose Filters out everything but the character s and

character - ranges specified.

Parameters v1 - Variable being modified

 v2 - Control setting

Similar Cmds Change, TrimChar

The first character of the control setting (v2) is the delimiter that will separate the
characters or pairs of characters. Paired characters represent a range, while single
characters represent precisely that character.

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A L T E R A T I O N

C O M M A N D S

49

Padded

Format v1 = Padded v2 v3 [v4 [v5]]

Examples MyVar1 = Padded 'AB' 4 ; 'AB '

 MyVar2 = Padded 'CD' 5 'Left' ; ' CD'

 MyVar3 = Padded 'EF' 6 'Center' ; ' EF '

 MyVar5 = Padded 'XYZ' 7 'Left' 'x' ; 'xxxxXYZ'

Purpose Pads a value to a specific length (number of

characters)

Parameters v1 - Variable being set

 v2 - Original value

 v3 - Length of result (number of characters)

 v4 - Edge to pad: 'Left' 'Right' 'Center'

 v5 - Character with which to pad

Defaults v4 = 'Right'

 v5 = ' ' (i.e. a space)

Similar Cmds Change, Insert

TrimChar

Format TrimChar v1 [v2]

Examples TrimChar MyVar1

 TrimChar MyVar2 'B M,L R$'

Purpose Removes unwanted characters from a variable

Parameters v1 - Variable to be changed

 v2 - Trimming specifications

Defaults v2 = 'B '

Similar Cmds KeepChar

The ―trimming specifications‖ comprises pairs of characters describing how you want
the variable trimmed. Each pair of characters is treated as follows:

• The first character is the instruction (e.g. B = Both edges)

• The second character is the actual character you want trimmed away

Here is an explanation of the various trimming instructions:

Instruc tion Meaning

 A Trim all instances of the character

 B Trim both sides of the variable (left and right)

 L Trim the left side of the variable

 R Trim the right side of the variable

 M Replace multiple instances of the character wit h just one

P A R S E - O - M A T I C U S E R M A N U A L — D A T A A L T E R A T I O N

C O M M A N D S

50

Consider the following variable:

MyVar = ' xxx///yyy zzz/// ' ; Note the spaces on both ends

Here is how various trimming specifications would affect the xyz variable:

Trim Spec Result Trim Spec Result

'L ' 'xxx///yyy zzz/// ' 'R ' ' xxx/// yyy zzz///'

'B ' 'xxx///yyy zzz///' 'A ' 'xxx///yyyzzz///'

'B Ay' 'xxx/// zzz///' 'A Az' 'xxx///yyy///'

'M/' ' xxx/yyy zzz/ ' 'B M/' 'xxx/yyy zzz/'

'MxMyMzM/' ' x/y z/ ' 'B Lx' 'xxx///yyy zzz///'

As you can see from the 'B Lx' example, the trimming instructions are executed
simultaneously. If you want to trim both spaces and then trim off the leading x's, you
need to do two TrimChar commands in a row.

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

51

Output Commands

Odb

Format Odb v1 [v2 v3 v4...]

Purpose Same as OutEnd, but se parates the fields with vertical

bars

Parameters Same as OutEnd

Similar Cmds OutRuler

You can use the Odb (―Output Debug‖) command while developing or fixing a script.
The vertical bars let you see if the variables have spaces on either side. Once your script
is working properly, you can do a quick search for ―Odb‖ to see if you left behind any
debug lines.

Chapter

6

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

52

OutCSV

Format OutCSV v1 [v2 [v3 v4 v5...]]

Examples OutCSV '' 'Init'

 OutCSV CustName

 OutCSV ItemPrice 'Unquoted'

 OutCSV '' 'Done'

Purp ose Generates CSV (Comma Separated Value) output; can also

be used to generate columnar reports with columns that

can be turned on and off

Parameters v1 - Value to send to output (or control information)

 v2 - Control setting

 v3 - If present, v3 and subse quent values are

concatenated to v1

Controls The format of v2 is:

 [+/ -][Init/Done/Stop/Quoted[...]/Unquoted[...]/Control]

 'Init' starts the accumulation of a new line of CSV

output.

 'Done' sends the accumulated output to the output file.

 'Stop' termina tes accumulation without sending output.

 'Quoted' puts quotes around the field.

 'Unquoted' adds the field without quotes.

 '+' and ' - ' turn fields on and off.

 '...' changes the default quoting state

 'Control' adjusts OutCSV settings.

Defaults v2 = 'Quo ted' (unless default quoting state has been

changed)

Similar Cmds OutEnd, Odb

Notes Nothing is actually sent to the output file until the

'Done' step (i.e. v2 = 'Done').

The various controls are explained in more detail below.

OutCSV Init

When v2 is 'Init', v1 can be used to specify an alternative separator (other than the
usual comma). Typical alternatives include the semicolon (;) and the Tab (ASCII
decimal 9). To save you having to look up ASCII values, OutCSV recognizes certain
codes for the separator. Here is an overview of the v1 settings...

v1 Explanation

'' Use default field separator ð this is usually a comma

',' You can also specify a comma explicitly

'TAB' The tab character

'CR' The carriage - return character

'CRLF' The carriage - return and lin efeed characters

'LFCR' Linefeed then carriage - return (non - standard ð rarely used)

'NONE' No separator (remember: if you use '' it means ñdefaultò)

You can, in fact, set the separator to any string. Used with padded text (or OutCSV's
Control setting with the MaxWidth and MinWidth options), you can use OutCSV to
generate columnar reports. Your script can then turn entire columns on and off using
the '+' and '-' feature.

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

53

Outputting a Field

When v2 is 'Quoted' or 'Unquoted' or null, OutCSV accumulates the field for the
current output line. The line is not actually sent to output until the 'Done' step is
reached. Here is a brief example:

OutCSV '' 'Init'

OutCSV 'Fred Jones'

OutCSV 1234.56 'Unquoted'

OutCSV '' 'Done'

This will output a two-field CSV line, with quotes around the first field but not the
second one. If the field is quoted, any occurrence of the quote character (") is replaced
by double-quotes, as per standard CSV conventions.

OutCSV Nulls

If you have several null fields to insert, you can use the Nulls option:

OutCSV 5 'Nulls'

This would accumulate 5 null fields for the current output line.

Nothing is done if the parameter is 0 (zero) or a null (''). If the value is more than 1000,
OutCSV stops with an error message.

OutCSV Done and Stop

When v2 is 'Done', OutCSV sends the accumulated line to the output file. The v1
value is not used.

An infrequently used alternative to 'Done' is 'Stop'. In this case, the output is not sent to
the output file but is saved in the special variable $OutCSVRec. You can use this
method if you do not wish to send the output immediately. In such case, you should
copy the result from $OutCSVRec to another variable before doing another set of
OutCSV commands.

OutCSV Control

When v2 is 'Control', OutCSV consults v1 for a command that configures how it will
operate. Control settings remain in effect within the script until changed.

The following options are available:

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

54

Command Example Explanation

MinWidth OutCSV 'MinWidth 25' Pad fields (with spaces) to

specified width

MaxWidt h OutCSV 'MaxWidth 25' Truncate fields that exceed

specified width

SetWidth OutCSV 'SetWidth 15' Set MinWidth and MaxWidth to the

same value

QuoteChar OutCSV 'QuoteChar @' Specify new character for quoting

fields

Separator OutCSV 'Separator ;' Change de fault separator (originally

comma)

To set the quoting character to a space, use 'QuoteChar Space'. When the QuoteChar
is a space, it is not doubled-up when it is found in a field, since the only reason one
would set the QuoteChar to a space is to create columnar reports.

You can also use 'QuoteChar None' to mean ―don't put any quoting characters around
purportedly quoted fields‖. This feature is useful if you are using OutCSV to produce
columnar reports.

The MaxWidth and MinWidth settings take into account the presence or absence of
quotes when calculating width. Also, unquoted fields are assumed to be numeric and (if
necessary) are padded on the left, while quoted fields are padded on the right.

Turning Fields On and Off

Whenever the first character of v2 is '-' (the minus character), all subsequent fields are
―turned off‖. To turn them back on, set the first character of v2 to '+' (the plus
character). Here is an example:

OutCSV '' 'Init'

OutCSV 'Fred Jones' ; Customer name field

OutCSV 1234.56 ' - Unquoted' ; Current balance

OutCSV '416 - 555 - 1212' '+' ; Customer phone number

OutCSV '' 'Done'

In this example, the ―Current balance‖ field will not appear in the output.

The ability to turn fields on and off can greatly simplify the testing of scripts that
generate CSV output. You can also use this feature to create reports with columns that
can be turned on and off.

Changing the Default Quoting State

The default state for OutCSV field accumulation is 'Quoted'. However, sometimes you
have a lot of 'Unquoted' fields in a row and it is a chore to have to type 'Unquoted'
repeatedly. You can redefine the default state by putting an ellipsis (three periods) after
'Quoted' or 'Unquoted'. Here is an example:

OutCSV '' 'Init'

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

55

OutCSV 1

OutCSV 2 'Unquoted... '

OutCSV 3

OutCSV 'A' 'Quoted...'

OutCSV 'B'

OutCSV '' 'Done'

This would output the following line:

"1",2,3,"A","B"

This alteration to the default only lasts until the 'Done' step; OutCSV always starts with
the default state of 'Quoted'.

Switchable CSV/Columnar Reports

Here is an example of some code that can be easily switched between CSV output and
columnar output, simply by changing one variable (called MyVar here):

CSVDelim = '' ; Normal setting (i.e. ñuse a comma")

Begin MyVar = ' Y' ; Did we turn on columnar mode?

 CSVDelim = ' ' ; Separate fields with space, not comma

 OutCSV 'MinWidth 15' 'Control' ; Pad fields out to 15 characters

 OutCSV 'MaxWidth 15' 'Control' ; Truncate any fields wider than 15

 OutCSV 'QuoteChar None' 'Control' ; Ignore the quotes around quoted fields

End

OutCSV CSVDelim 'Init' ; Start of OutCSV accumulation

OutCSV FirstName ; A quoted field

OutCSV LastName ; A quoted field

OutCSV Balance 'Unquoted' ; Unquoted field (typical for numbers)

OutCSV '' 'Done' ; Send fields to output file

Simply by setting the variable MyVar to 'Y', a CSV (Comma Separated Value) file
becomes a columnar report. The result may not be elegant, but if you are looking for
fast results without having to load the output into a spreadsheet, this can be a real time-
saver.

OutCSV Examples

Parse-O-Matic includes a sample script named ScrPSTOutCSV.txt . It provides
examples of the techniques described above. You can also find CSV-oriented sample
scripts in the Pyroto, Inc. Knowledge Base, available at www.Parse-O-Matic.com.

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

56

OutEnd

Format OutEnd v1 [v2 v3 v4...]

Examples OutEnd 'Customer List' ; One value to

output

 OutEnd 'Customer Name: ' CustName ; Two values to

output

Purpose Sends data to the output file, followed by a Carriage -

Return and a Linefeed (the standard end - of - line

characters for text files)

Parameters v1 - Value to send to output file

 v2 - Value (any number of values can be appended)

Similar Cmds OutNull, Output, OutRuler

OutFile

Format OutFile v1 [v2]

Example OutFile 'C: \ MyFiles \ Output.txt' 'Append'

Purpose Changes the current output file

Parameters v1 - Name of t he output file

 v2 - Control setting

Controls 'New' = Start with an empty file

 'Append' = Add to the end of the file (if it exists)

Defaults v2 = 'New'

If the file name is not fully qualified (i.e. does not contain a path) the file will be placed
in the default output folder, as set by the Path button.

If a file is opened as New and a file already exists with that name, the old file is
renamed with a .bak extension. For this reason, you should not use OutFile to switch
to a file with a .bak extension.

The fully-qualified name of the current output file is found in the $ActualOFN
variable. If you copy this value into a variable, you can return to the original output file
later on by using OutFile with 'Append'.

OutNull

Format OutNull

Purpo se Sends a blank line to the output file (i.e. just a

Carriage - Return and a Linefeed).

Similar Cmds OutEnd, Output, OutRuler

Output

Format Output v1 [v2 v3 v4...]

Purpose Same as OutEnd, but does not send ñend- of - lineò

characters

Parameters Same as OutEnd

Similar Cmds OutEnd, OutNull, OutRuler

P A R S E - O - M A T I C U S E R M A N U A L — O U T P U T C O M M A N D S

57

OutRuler

Format OutRuler v1 [v2 v3 v4...]

Purpose Same as OutEnd, but includes a measuring scale

Parameters Same as OutEnd

Similar Cmds Odb

You can use OutRuler while developing a script to help you measure where columns
start and end. It outputs the line as OutEnd does, but includes a measuring scale above
it.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

58

Comparators

Overview

A ―comparator‖ is a parameter used in scripting commands which compares one value
to another. For example:

If AreaCode = '416' Output 'Toronto'

In this example, a comparison is being made between the variable named AreaCode
and the literal '416'. The equals sign is the ―comparator‖.

Now consider this command:

If AreaCode = '514' Region = 'Montreal '

In this case, the first equals sign is a comparator because it is comparing two values.
The second equal sign is not a comparator; it is actually the Equals command, which
assigns a value to a variable.

Types of Comparators

Parse-O-Matic Scripting supports several types of comparators:

Type What It Does

Literal Compares values character by character

Numerical Compares the arithmetic values of real or integer numbers

Length Compares the length of one value with a number

Pattern Compares a value against a pattern

These are explained below in more detail.

Chapter

7

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

59

Literal Comparators

Here is a list of the literal comparators:

Comparator Meaning Comments

= Identical

<> Not identical

> Higher See Note # 1

>= Higher, or identical See Note # 1

< Lower See Not e # 1

<= Lower, or identical See Note # 1

^ Contains

~ Does not contain

Is Basically the same See Note # 2

Longer Length is longer

Shorter Length is shorter

SameLen Length is the same

Note # 1: Depends on sort order. For a discussion of what this means, refer to the
section ―Literal Comparisons and Sort Order‖.

Note # 2: The two values are considered basically the same if they contain the same
text, regardless of upper or lower case, and any surrounding whitespace. Thus '
CHESHIRE CAT ' is the considered the same as 'Cheshire Cat'.

Examples

With some restrictions (discussed later), literal comparators work on both numeric and
alphabetic data. Here are some examples of literal comparisons that are true:

'ABC' <> 'ABCD' '333' <> '444'

'ABC' <= 'ABCD' '333' <= '444'

'ABC' < 'ABCD' '333' < '444'

'ABC' Shorter 'ABCD' '333' SameLen '444'

'ABC' >= 'ABC' 'ABC' <> 'CDE'

'ABC' <= 'ABC' 'ABC' <= 'CDE'

'ABC' = 'ABC' 'ABC' < 'CDE'

'ABC' SameLen 'ABC' 'ABC' SameLen 'CDE'

'ABC' ^ 'AB' 'ABC' ~ 'CD'

'ABC' ^ 'ABC' 'ABC' ~ 'CC'

Note especially the ^ (contains) and ~ (does not contain) comparators. These are
extremely useful when analyzing data.

Literal Comparisons and Sort Order

Some of the literal comparators compare text according to 'PC-ASCII sort order'. For
plain English text, this works fine. However, if your text contains diacritical (accented)
characters, you should be aware that some comparisons will not work correctly. For
example, the 'o-circumflex' character (ô) appears in the PC-ASCII character set after the
PC-ASCII value for 'Z'.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

60

Numerical Comparators

Here is a list of the numerical comparators:

Comparator Meaning

#= Equal

#<> Not equal

#> Greater

#>= Greater, or equal

#< Less than

#<= Less than, or equal

Numerical comparators avoid the problem of sort order. For a discussion of this, see
Numeric Comparisons and Sort Order.

Examples

Here are some examples of numeric comparisons (encoded variously with and without
surrounding quotes) that are true:

345 #<> 567 '1.23' #<> '9.87'

345 #<= 567 '1.23' #<= '9.87'

567 #> 345 9.87 #> '1.23'

'3' #< '6.2'

The last example compares an integer ('3') with a real number ('6.2'). The numeric
comparators automatically check if one of the numbers contains a decimal point.

In such case, the comparison is performed in 'real number' mode, which imposes the
same accuracy restrictions as those imposed by the CalcReal command. This might
create a problem if you are comparing a decimal number with a large integer, but this is
rarely a cause for worry, since most data analysis tends to compare similar types of
numbers.

Numeric Comparisons and Sort Order

You can get unintended results when you use literal comparators on numbers. For
example, this does not work as you might expect at first glance:

count = count+

If count >= 2 OutEnd count

You might expect this to output any number greater than or equal to '2', but in fact you
will get a different result, because the comparison is a literal (text) comparison. In the
example above, '2' to '9' are greater or equal to '2', but '10' (which starts with '1') is
considered less, as is evident when you sort several numbers alphabetically:

1 10 11 15 100 2 20 200 3 30

As you can see, the values 1, 10, 11 and 15 come before '2' when sorted alphabetically.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

61

To compare numbers, you should use the numerical comparators. The correct way to
code the previous example is as follows:

count = count+

If count #>= 2 OutEnd count

Written in this way, numbers greater than or equal to 2 will be sent to the output file.

Length Comparators

Here is a list of the length comparators:

Comparator Meaning

Len= Equal

Len<> Not equal

Len> Greater

Len>= Greater, or equal

Len< Less than

Len<= Less than, or equal

The length of the value on the left side of the comparator is compared with a number
on the right side of the comparator. For example:

If $OutD ata Len= 0 NullLine = 'Yes'

Of course, you could accomplish the same thing with this command:

If $OutData = '' NullLine = 'Yes'

However, in most cases the length comparisons will save you some coding because
you will not have to use the Len command to obtain a variable for comparison.

Comparing Patterns

The Matches comparator compares a value against a pattern that uses ―regular
expression‖ syntax (explained later). For example:

If MyVar Matches 'c[aou]t' GotMatch = 'Yes'

This will set the variable GotMatch to 'Yes' if MyVar contains 'cat', 'cot' or 'cut' (case is
ignored).

The pattern uses ―regular expression‖ syntax (described in the next section) and must
be the second item in the comparison.

In order for the comparison to be ―true‖, the item being compared to the pattern must
match the pattern precisely — the Matches comparator does not look for substrings.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

62

If you want to allow a substring to match, use the Comprises comparator. For
example:

If MyVar Comprises 'c[ao]t' GotMatch = 'Yes'

This will set GotMatch to 'Yes' if MyVar includes either the word 'cat' or 'cot'. Thus,
the strings 'He had a cat' and 'He had a cot' both Comprise the pattern, as do the
strings 'cat', 'cot', 'Cat', 'scatter' and so on.

Regular Expressions

A ―Regular Expression‖ is a sequence of characters where certain characters have a
special meaning and are not matched literally. For example, a period will match any
character (including the period), while the dollar-sign ($) matches the end of the line of
text.

In the following list, the letters x, y and z stand in for any character.

^xxx Match a sequence of characters at the start of a line

xxx$ Match a sequence of characters at the end of line

x.y Match a single character (between 'x' and 'y' in this examp le)

[xz] Match a set of characters ('x' and 'z' in this example)

[x - z] Match a range of characters (this example covers 'x' to 'z')

x* Match zero or more occurrences of the preceding character

[xyz]* Match zero or more occurrences from the preceding s et

[x - z]* Match zero or more occurrences from the preceding range

[^xyz] Match any character but the ones specified

[^x - z] Match any character but the ones in the specified range

The backslash (\) character has a special meaning in regular expressions:

\ x Means ñtake the next character literallyò

 For example: \ [means the actual [character

 rather than the start of a set or range

\ t Means ña tab characterò (ASCII character 9)

Basic Regular Expressions

Here are some examples of matches:

C.t Match Cat, Cot, Cut, Cxt, C3t etc.

C[aou]t Match Cat, Cot, Cut only

B..d Match Bird, Bred, Bead etc.

^Dog Match Dog only if it is at the beginning of a line

Moose$ Match Moose only if it is at the end of a line

Pa*d Match Pd, Pad, Pa ad, Paaad etc.

Using the Asterisk

The last example given above uses the * character to indicate zero, one or more
occurrences of a particular character — in this case, the letter 'a'. Incidentally, this is

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R A T O R S

63

different from the way the Windows operating system uses the * wildcard character. In
Windows, the * wildcard matches ―any single character‖.

In regular expressions, however, the asterisk is specific about what you are looking for.
That is why 'Pa*d' would not match 'Parsed'; the asterisk means ―match zero or more
of the preceding character specification‖.

If you actually want to search for 'Pa' followed by one or more letters and then 'd', the
correct syntax is:

Pa[a - z][a - z]*d

This means that we want to match 'Pa', then a letter in the range from 'a' to 'z', then
some number (including zero) of characters in the 'a' to 'z' range, and finally the letter
'd'. The character string 'Parsed' would meet these criteria, as would 'Pad', 'Paid' and
'Packed'.

Advanced Regular Expressions

Here are some more complicated examples of regular expressions:

C[^ou]t Matches Cat, Cxt and so on, but not Cot or Cut

C[ao]*t Matches Ct, Cat, Caat, Cot, Coot, Cooot, Coat, Coaoat

etc.

[0 - 9][0 - 9]* Matches numbers such as 0, 1, 01, 10, 25, 0990, 9999 etc.

- [0 - 9][0 -

9]*

Matches neg ative numbers such as - 0, - 1, - 19, - 12345 etc.

In the last example, [0-9] is specified twice to ensure that at least one digit is found.
Bear in mind that the * character means ―zero or more occurrences‖. If you had only
specified '-[0-9]*' you would get a spurious match within the string 'Hello - there' since
the '-' character is indeed found, followed by zero occurrences of the digits 0 through 9.

You can create fairly complex patterns using regular expressions. Consider this
example:

\ $[0 - 9][0 - 9]* \ .[0 - 9][0 - 9]

This would match dollar amounts with two decimal places, such as $0.00, $03.23,
$3.14, $9.99, $1234.56 and so on.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R I S O N C O M M A N D S

64

Comparison Commands

Overview

For a broader overview of comparisons in scripting, consult one of the following
sections of this user manual:

• Comparators

• Flow Control Commands

The commands described below deal with special cases involving comparison.

AlphaNumPatt

Format v1 = AlphaNumPatt v2 [v3]

Example X = AlphaNumPatt '416 - 287 - 8892' ; Set X to 'NNN - NNN-

NNNN'

Purpose Creates a pattern of characters representing the format

of variable v2 in terms of alphabetic, numeric and

special characters

Parameters v1 - Variable being set

 v2 - Value being analyzed

 v3 - Control setting

Controls v3 is a TrimChar specif ication

Defaults v3 = '' (no trimming)

Similar Cmds Numeric

 See also the Matches or Comprises comparators

AlphaNumPatt returns an 'A' for every letter (uppercase or lowercase) in v2, and an 'N'
for every digit. All other characters (spaces, dashes etc.) are left as-is. Here are some
sample results:

Value of

v2

Value of

v3

Result

(v1)

Value of

v2

Value of

v3

Result

(v1)

'12 - 34- 56' (Not set) 'NN - NN- NN' ' $12.34 ' (Not set) ' $NN.NN '

'AB 1234' (Not set) 'AA NNNN' ' XY 999 ' 'B ' 'AA NNN'

Chapter

8

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R I S O N C O M M A N D S

65

AlphaNumPatt is handy for detecting the presence or conformity of a phone number,
serial number, part number etc., and is sometimes more convenient than the Matches
and Comprises comparators.

CompareCtrl

Format CompareCtrl v1

Example CompareCtrl 'Match Case'

Purpose Changes the default case sensitivity of comparisons

Parameters v1 = Control setting

Controls IgnoreCase/MatchCase

Similar Cmds Que

Unless otherwise instructed by CompareCtrl, comparisons ignore text case, so that (for
example) 'Cat' is considered the same as 'CAT' or 'cat'. You can use CompareCtrl to
change this behaviour.

CompareCtrl affects comparisons only; it does not affect commands that search for
text, such as Change, FindPosn, Lookup, Parse, Insert and so on.

Numeric

Format v1 = Numeric v2 [v3]

Example X = Numeric '3.14159' 'Yes' ; Set X to 'Y'

Purpose Evaluates whether or not a value is numeric

Parameters v1 - Variable being set to 'Y' or 'N' (for Yes and No)

 v2 - Value being assessed

 v3 - Control setting: allow deci mal point?

Controls No/Yes

Defaults v3 = 'No' (do not allow a decimal point ð accept only

integers)

Similar Cmds The Matches and Comprises comparators

This function returns 'Y' if v2 is numeric (i.e. a number). Otherwise, it returns 'N'.

A leading - or + character is considered an acceptable part of a numeric value. Multiple
decimal points (e.g. '12.34.56') are not accepted as numeric. Scientific notation (e.g.
'1E32') is not accepted as numeric.

P A R S E - O - M A T I C U S E R M A N U A L — C O M P A R I S O N C O M M A N D S

66

Que

Format v1 = Que v2 k3 v4 [v5]

Example MyVar = Que 'Cat' = 'Dog' ; Compare two strings

Purpose Saves the result of a comparison

Parameters v1 - Variable being set to 'Y' or 'N' (for True or

False)

 v2 - Value to be compared

 k3 - Comparator

 v4 - Value to compare to v2

 v5 - Control setting

Controls IgnoreCase/MatchCase

Defaults v5 = 'IgnoreCase' (unless overridden by CompareCtrl)

Similar Cmds If, Begin

Que (short for ―Question") is useful when you need to save the result of a comparison,
or if you need a single instance of case sensitivity. For most comparisons, however, you
will use If or Begin.

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

67

Positional Commands

Cols

Format v1 = Cols v2 v3 [v4]

Example MyVar = Cols OtherVar 10 20 ; Columns 10 to 20

Purpose Copies a range of columns (i.e. character positions)

Parameters v1 - Variable being set

 v2 - Value (usually a variable) being copied

 v3 - Starting column

 v4 - Ending column

Defaults v4 = v3 (i.e. copy one character)

Similar Cmds Equals (Set Variable) with a range specified

Notes If v3 is less than or equal to 0, it is treated as 1.

 If v3 points to a position beyond the end of v2, v1

will be null.

 If v4 points to a position beyond the end of v2, it is

treated as if it was the same as the length of v2.

FindPosn

Format v1 = FindPosn v2 d3 [v4]

Examples MyVar1 = FindPosn 'ABC' 'BC' ; Set MyVar1 to '2'

 MyVar2 = FindPosn 'ABCC' '>*C' ; Set MyVar2 to '4'

Purpose Find the character position of text

Parameters v1 - Variable being set

 v2 - Value being searched

 d3 - Decapsulator

 v4 - Decapsulator control settings

Control s Exclude/Include; IgnoreCase/MatchCase

Defaults v4 = 'Include MatchCase'

Similar Cmds ScanPosn

Notes If nothing is found, v1 is set to '0' (zero).

 If the ñExcludeò decapsulator setting is used, FindPosn

willpoint to the character position after the strin g it

finds.

ScanPosn

Format ScanPosn v1 v2 v3 v4 [v5]

Examples See below

Purpose Searches v3 for the start and end columns (character

Chapter

9

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

68

positions) for one of the strings or patterns listed in

v4.

Parameters v1 - Variable being set: ñFromò column

 v2 - Variable being set: ñToò column

 v3 - The value being searched

 v4 - The list of strings or patterns for which to

search

 v5 - Control settings

Controls Any/First/Last; IgnoreCase/MatchCase; RegExp

Defaults v5 = 'Any IgnoreCase'

Similar Cmds FindPosn, Parse

Notes Sets $Success ('Y' = something was found).

 If nothing is found, v1 and v2 are both set to '0'

(zero).

 If RegExp is included in the control settings, each

string is treated as a regular expression pattern

rather than an actual string .

When you are analyzing data, a common requirement is to find out if one of several
strings can be found in another string. For example, you might want to find out if a
name starts with a salutation (Mr., Mrs., Ms.). ScanPosn lets you perform such a search
with a single command.

For example, to search for a salutation in a string:

ScanPosn from to MyVar '/Mr./Mrs./Miss/Ms.'

If MyVar contains one of the scanterms (e.g. 'Mrs.') in the scanlist, ScanPosn will set
the appropriate ―From‖ and ―To‖ variables. Thus, if MyVar contains 'Ms. Mary Jones',
the ―From‖ variable is set to '1' and the ―To‖ variable is set to '3' (since 'Ms.' goes from
positions 1 to 3 in MyVar).

If none of the scanterms is found, the ―From‖ variable is set to '0' and the special
variable $Success is set to 'N'. Thus, if MyVar contains 'John Smith', no salutation is
found, and the ScanPosn command shown above will set the ―From‖ variable to '0'.

The Scanlist

The scanlist can contain one or more scanterms. The first character in the scanlist is
interpreted as the delimiter (separator) for the scanterms. Thus, the following scanlists
are all valid:

'/Mr./Mrs./Miss/Ms.' ; Delimiter is: /

'xMr.xMrs.xMissxMs.' ; Delimiter is: x

'@Library@School@Gymnas ium@Clinic/Hospital' ; Delimiter is: @

'/Cow.' ; Delimiter is: /

The first example ('/Mr./Mrs./Miss/Ms.') has already been demonstrated. The second
example uses the letter 'x' as a delimiter. This might be a bad choice for a delimiter; it
would cause a problem if one of the scanterms contained an 'x', since it would be
treated as two scanterms. For example:

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

69

'xJohnxTrixiexFred'

The name 'Trixie' contains an 'x', so it would be broken down into two scanterms ('Tri'
and 'ie'). You should always choose a scanlist delimiter that does not appear in the list
of scanterms.

Accommodating Variation

When you design a scanlist, you should take into account the possibility that the input
might contain strange variations. Consider this command:

 ScanPosn x y 'Mr John Smith' '/Mr./Mrs./Ms.'

This search will fail because the 'Mr' is followed by a space, not a period. A more
forgiving command would be:

 ScanPosn x y 'Mr John Smith' '/Mr./Mrs./Ms./Mr /Mrs /Ms '

This would successfully locate the 'Mr ' string, and set x to '1' and y to '3'. (The '3'
points to the space.)

H A N D L I N G P R E F I X E S A N D S U F F I X E S

When designing a scanlist, you should consider that a scanterm might be part of a
word. For example:

ScanPosn x y 'Mississippi Sue' '/Mr./Mrs. /Miss/Ms.'

This will find the 'Miss' in Mississippi, even though this is not part of a salutation. A
more appropriate command would be:

ScanPosn x y 'Mississippi Sue' '/Mr./Mrs./Miss /Ms.'

The space after 'Miss' in the scanlist ensures that if it is found, it will be separate from
any word following it.

The trailing space is not necessary for the scanterm 'Mr.', since no word contains a
period. However, if you do include spaces after the periods (as in '/Mr. /Mrs. /Miss
/Ms. ') the consistency of rationale may simplify your subsequent script code.

You must also take suffixes into account. For example:

ScanPosn x y 'Zinc Enterprises' '/Inc/Co/Enterprises'

This will find the 'inc' in 'Zinc'. You can add a space in front of each scanterm to
ensure that it is separated from any other word:

ScanPosn x y 'Zinc Enterprises' '/ Inc/ Co/ Enterprises'

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

70

You may be tempted to always put spaces on both sides of a word, to handle both
prefixes and suffixes. However, consider this example:

ScanPosn x y 'Wazoo Inc' '/ Inc / C o / Enterprises '

None of the scanterms is found, because the 'Inc' in the source string does not end in a
space. The control settings (described next) can help you address this kind of problem.

Control Settings

Unless otherwise instructed, ScanPosn will find the first scanterm that appears
anywhere in the source string, and return its start and end positions. It will also ignore
text case (e.g. 'CAT' = 'Cat'). You can modify this behaviour by using the optional
control setting.

L A S T , F I R S T A N D A N Y

The 'Last' (i.e. rightmost) control setting tells ScanPosn to find the scanterm that has
the highest ―To‖ value with the lowest ―From‖ value. This means that all of the
scanterms are evaluated. Consider this command:

ScanPosn x y 'SHREWxxxCATxxxMOUSExxx' '/CAT/DOG GY/MOUSE/ELK' 'Last'

ScanPosn finds 'CAT', but continues looking to see if there are any better matches to
the right. Eventually it finds MOUSE and sets x to '15' and y to '19' (pointing at
'MOUSE').

If you use the 'First' (i.e. leftmost) parameter, ScanPosn will check all the scanterms to
find out which one has the lowest ―From‖ position with the highest ―To‖ value. For
example:

ScanPosn x y 'SHREWxxxCATxxxMOUSExxx' '/CAT/DOGGY/MOUSE/ELK' 'First'

This will set x to '9' and y to '11' (pointing at 'CAT').

If you do not specify 'First' or 'Last', ScanPosn assumes you mean to use the 'Any'
control setting. It finds the first scanterm it can, and ignores the rest. Here is an
example.

ScanPosn x y 'SHREWxxxCATxxxMOUSExxx' '/CAT/DOGGY/MOUSE/ELK'

The first scanterm is 'CAT', and this can be found at positions 9 to 11. ScanPosn will
return those values, and ignore the rest of the scanterms.

The 'Any' technique is useful if you want to know if one of the scanterms appears in
the source string, but you are not interested in finding out which one. (You can specify
'Any' explicitly, but since it is the default control setting, this is not necessary.)

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

71

T H E ― B E S T M A T C H ‖ P R I N C I P L E

Note: The ―Best Match‖ principle does not apply to the 'Any' control setting. It applies
only to 'First' and 'Last' searches.

To use the ScanPosn command effectively, you must understand the concept of 'the
best match'. This can be illustrated with an example:

ScanPosn x y 'MegaWhizco International' '/CO/WHIZCO/MEGAWHIZ' 'Last'

The ScanPosn command finds the scanterm 'CO' at positions 5 to 6. However, it
continues looking for an even better match.

It finds that 'WHIZCO' is just as far to the right (i.e. it ends at position 6), but has a
lower starting position. This makes it a better match.

The next scanterm ('MEGAWHIZ') has a lower starting position, but its ending
position is not as good for a 'Last' search because it is not as far to the right.

As a result of all this, ScanPosn will set x to '5' and y to '10' — pointing to the ―From‖
and ―To‖ columns for 'WHIZCO'.

In other words, when ScanPosn is looking for the 'Last' scanterm, it will first identify
the found scanterms which have the highest ending position, and then choose the
longest one.

Here is an example using a 'First' search:

ScanPosn x y ' Our catalog is enclosed' '/CAT/MOOSE/CATALOG/DOG' 'First'

ScanPosn finds 'CAT' at positions 5 to 7, but as it continues checking the scanterms, it
finds that 'CATALOG' is just as far to the left (i.e. it starts at position 5), but it is a
better match since it has a higher ending position.

As a result, ScanPosn will set x to '5' and y to '11'.

The ―Best Match‖ principle does not affect 'Any' searches. For example:

ScanPosn x y 'Our catalog is enclosed' '/CAT/MOOSE/CATALOG/DOG'

This sets x to '5' and y to '7'. Since this is a 'Any' search, ScanPosn stops looking as
soon as it has found a match.

When doing an 'Any' search, you cannot be sure if any of the other scan terms appear
in the source string. For example:

ScanPosn x y 'Our cat and dog are upstairs' '/C AT/DOG'

P A R S E - O - M A T I C U S E R M A N U A L — P O S I T I O N A L C O M M A N D S

72

This will find 'CAT' and stop looking for additional matches. If you change the order
of the scanlist, you will get different values:

ScanPosn x y 'Our cat and dog are upstairs' '/DOG/CAT'

This would give different values for the ―From‖ and ―To‖ variables. This is normal
behaviour; an 'Any' search is useful only for detecting if one of the scanterms appears
in the source string. After doing an 'Any' search, you will typically check the special
variable $Success to see if a string was found.

Finding Patterns with ScanPosn

You can include the control setting ―RegExp‖ (meaning ―Regular Expression‖) to
indicate that ScanPosn should look for a pattern of characters rather than specific
characters. For example:

; Scale ---- +---- 1---- +----

Source = 'Kitt y Cats Are Cool'

ScanList = '/c.t/co*l'

ScanPosn p1 p2 Source ScanList 'First RegExp'

ScanPosn p3 p4 Source ScanList 'Last RegExp'

This would set the following values:

p1 = 7

p2 = 9

p3 = 16

p4 = 19

Regular Expressions are explained in the ―Comparators‖ section of the user manual.

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

73

Decapsulators

Overview

A ―decapsulator‖ is a command parameter that defines a search for where a string of
characters either begins or ends.

If that definition was not particularly helpful, it is because decapsulators cannot be fully
described by a single sentence. But we encourage you to read through this section,
because decapsulators are very important in Parse-O-Matic Scripting. Here is the
reason why:

Decapsulators let a single Parse-O-Matic Scripting command accomplish what
might take dozens of commands in a standard programming language.

The underlying concept is this: when analyzing data, the part you are interested in (the
―field‖) is typically surrounded ("encapsulated‖) by some kind of distinctive text. A
decapsulator looks for the distinctive text on either side of the data you want and thus
helps you extract the field.

Sometimes the ―distinctive text‖ appears more than once in the data you are
examining. Decapsulators can handle this situation.

Sometimes one edge of the field is the beginning or end of the data you are examining,
so there is no ―distinctive text‖ to look for. Decapsulators can handle this situation,
too.

Quick Reference

Here are some sample decapsulators:

Sample ñFromò Decapsulator Meaning ñToò Decapsulator Meaning

'23' From column 23 onwards Up to column 23

'AB' After first occurrence of 'AB' Before first 'AB'

'1*CD' After first occurrence of 'CD' Before first 'CD'

'5*EF' After fifth occurrence of 'EF' Before fifth 'EF'

Chapter

10

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

74

'<*GH' After fir st occurrence of 'GH' Before first 'GH'

'>*IJ' After last occurrence of 'IJ' Before last 'IJ'

'' From left edge of data From right edge of data

' - 2' Two columns in from the right Same

Each of these techniques is explained below in more detail.

A Simple Example

Here is an example of how decapsulators work. Consider the following commands.

SourceVar = 'AAABBBCCC'

ResultVar = Parse SourceVar '3*A' '1*C'

The second command means ―Set ResultVar to everything between the third
occurrence of 'A' and the first occurrence of 'C'.‖ In other words, ResultVar will end
up containing 'BBB'.

Why Decapsulators are Necessary

When analyzing data, the fields you are interested in are sometimes arranged in tidy
columns — but not always. Quite frequently, a field will start after some kind of
delimiter, as in the following example.

SourceVar = 'Mouse,Gazelle,Mouse,Elephant'

Here the fields are separated by commas — a commonly-used format for data known
as CSV (Comma Separated Values).

Extracting, say, the second item from free-form data is rather awkward if you are using
a standard programming language. Fortunately, Parse-O-Matic Scripting has been
developed with precisely this kind of situation in mind.

Using decapsulators, the Parse command lets you extract the ―Nth‖ item. For example,
to extract the third item in the free-form example above, you could use this command:

ResultVar = Parse SourceVar '2*,' '3*,'

This means ―Set the variable ResultVar by looking in SourceVar and taking everything
between the second comma and the third comma‖. ResultVar would thus be set to
'Mouse'.

Introduction to Occurrence Numbers

Let's have another look at that last command.

ResultVar = Parse SourceVar '2*,' '3*,'

The first decapsulator (i.e. the '2*,' part) is the ―From‖ specification. The second
decapsulator (i.e. the '3*,' part) is the ―To‖ specification. It is interpreted as follows:

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

75

3 means ñthe third occurrence"

* marks the end of the occurrence number

, is the text you are looking for

Decapsulators can be used to find more than a single character. Let's say that (for some
odd reason) a variable named xyz has been set such that each field is separated with a
pair of X's, as in the following example (with the XX strings highlighted for clarity).

xyz = 'mouse XXgazelle XXmouse XXelephant'

You can extract the third item with this command:

abc = Parse xyz '2*XX' '3*XX'

___ ___ _ __ _ __

 | | | | | |

 Variable to set | | | | |

 Variable to search | | | ñToò text being sought

 ñFromò occurrence number | ñToò occurrence number

 ñFromò text being sought

This command sets the variable abc to 'mouse', since it is found between the second
and third occurrences of XX.

Sample Application

The Parse command is particularly useful for extracting information from CSV
(Comma Separated Value) files. Here is an example of a CSV file:

"Mouse","Gazelle","Mouse","Elephant"

"Dog","Giraffe","Elk","Mongoose"

"Monkey","Snake","Caribou","Trout"

These fields could be extracted with this series of commands:

field1 = Parse $OutData '1*"' '2*"'

field2 = Parse $OutData '3*"' '4*"'

field3 = Parse $OutData '5*"' '6*"'

field4 = Parse $OutData '7*"' '8*"'

For the first line of the input file, field1 is set to 'Mouse', field2 is set to 'Gazelle', and so
on.

Occurrence Number Syntax

Occurrence numbers must be larger than zero. The following lines are not valid Parse
commands:

field1 = Parse $OutData '0*"' '2*"' ; "From" decapsulator is zero

field2 = Parse $OutData ' - 1*"' '2*"' ; "From" decapsulator is

negative

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

76

The occurrence number must always be followed by an asterisk (the * character) so
you can search for a number. Consider the following example (the meaning of which
would be unclear without the asterisk):

MyVar = Parse 'xxx2yyy2zzz2' '1*2' '2*2'

This sets MyVar to the text occurring between the first '2' and the second '2'. In other
words, MyVar is set to 'yyy'.

Finding the First and Last Occurrence

A decapsulator can refer to ―the last occurrence":

xyz = Pars e 'AaaBAbbBAccB' '>*A' '>*B'

In both decapsulators, the > symbol means ―the last occurrence‖. Thus, the command
means, ―Set the xyz variable to everything between the last A and the last B‖. Thus, the
xyz variable is set to ―cc‖.

You can also use the < character to mean ―the first occurrence‖, though this is
somewhat redundant, since the following commands are equivalent:

abc = Parse 'AaaBAbbBAccB' '<*A' '<*B'

abc = Parse 'AaaBAbbBAccB' '1*A' '1*B'

abc = Parse 'AaaBAbbBAccB' 'A' 'B'

All three commands would set the abc variable to 'aa'.

Finding the Next Occurrence

When using occurrence numbers for certain kinds of data, you will often find that the
―To‖ occurrence number is 1 (one) more than the ―From‖ occurrence number.
Consider this example:

xyz = 'AB,CD,EF,GH'

Field1 = Parse xyz '' '1*,'

Field2 = Parse xyz '1*,' '2*,'

Field3 = Parse xyz '2*,' '3*,'

For Field3 you are extracting everything between the second and third comma. It can
become tiresome to write code like this — always adding one to the ―From‖
occurrence number. Fortunately, you can use the ―next occurrence‖ symbol '@*' in the
―To‖ decapsulator:

xyz = 'AB,CD,EF,GH'

abc = Parse xyz '2*,' '@*,'

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

77

This will set the ―From‖ position to the second comma, and the ―To‖ position to the
comma after that (i.e. the third one). The '@*' symbol means ―Look for the To text
starting immediately after the From text‖.

Note: The ―next occurrence‖ symbol (@*) can only be used in the ―To‖ decapsulator.

Positional Decapsulators

Note: Positional decapsulators imply that operations proceed from or to the exact
character position indicated, regardless of the control settings.

You can specify a number to indicate the ―From‖ or ―To‖ character position. In this
mode, the Parse command behaves exactly like the Cols command. Thus, the
following two commands accomplish the same thing:

xyz = Parse MyVar '10' '20'

xyz = Cols MyVar '10' '20'

As such, this is not particularly helpful. However, you can combine positional
decapsulators with other types of decapsulators, as in this example:

MyVar = 'ABCD/abcd/'

abc = Parse MyVar '3' '1*/'

This will set the variable abc to 'CD'.

Negative Positional Decapsulators

You can also count backwards from the right edge of the data. Consider this example:

MyVar = 'ABCDEFG'

xyz = Parse MyVar ' - 3' ' - 2'

This will set the variable xyz to 'EF'. (The last character in a variable is represented by
position '-1'.)

Using Positional Decapsulators Safely

You need to be careful when you use positional decapsulators. If, for example, you use
a negative positional decapsulator, and you end up referring to a character before the
beginning of the string, it isn't clear to the Parse-O-Matic engine what you ―meant‖ by
that. (In all likelihood, you didn't mean anything; these situations sometimes arise if you
have not considered all possible variations in format of the input data.)

For the reason just noted, and others that will become evident as you write scripts: if
there is a chance that a positional decapsulator will refer to a character position of zero
or less, or if it might refer to a position beyond the end of the data, your script should
check the length of the data before trying the command.

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

78

The Plain Decapsulator

The occurrence number is not always needed. Either the ―From‖ or ―To‖ decapsulator
can be represented as a plain (non-numeric) string, as in the following example.

OldVar = 'zzzABChelloXYZzzz'

NewVar = Parse OldVar 'ABC' 'XYZ'

This would set the variable named NewVar to 'hello' since it means:

1. Copy from the character following the first 'ABC'

2. Copy up to the character preceding the first 'XYZ'

This is, of course, equivalent to the following command, which uses occurrence
numbers:

NewVar = Parse OldVar '1*ABC' '1*XYZ'

In general, it is best to explicitly give occurrence numbers, unless you know that the
format of the data is not going to change.

Unsuccessful Searches

When a command that uses decapsulators does not find the search text, it does as little
as possible. For example, if a Parse command does not find the encapsulating text, it
sets the variable to a null (''). Here are two examples:

abc = Parse 'ABCDEFGHIJ' '1*K' '1*J' ; There is no 'K'

abc = Parse 'ABCDEFGHIJ' '1*A' '1*X' ; There is no 'X'

To illustrate this principle further: if the Overlay command does not find the search
text, it does nothing at all, as in the following example.

abc = 'ABCDEFGHIJ' ; Set a variable

Overlay abc 'K' 'LMNOP' ; There is no 'K', so nothing is done

If the ―From‖ value is less than the ―To‖ value, the Parse-O-Matic engine will display
an error message, then terminate further processing. For example:

abc = Parse abc 'ABCDEFGHIJ' '1*J' '1*A' ; 'J' comes after 'A'

This kind of failure typically happens if the data contains an odd arrangement of text
that you had not foreseen. In such case, it would not be reasonable for processing to
continue; you need to be warned about departures from what your script implies you
expected.

The Control Setting

Commands that use decapsulators typically have a ―control setting‖ that allows you to
adjust the way the command is performed. A few examples follow.

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

79

The Parse command's control setting tells Parse whether to include or exclude the
surrounding (i.e. searched-for) text. By default, the surrounding text is excluded (unless
the decapsulator is positional). However, if you want to include it, you can add 'Include'
at the end of the Parse command, as in this example:

xyz = Parse 'aXcaYcaZc' '2*a' '2*c' 'Include'

This tells the command to give you everything between the second 'a' and the second
'c' — including the 'a' and 'c'. In other words, this sets the variable xyz to 'aYc'.

You can also set the Control specification to 'Exclude', though since this is the default
setting for Parse, it isn't necessary. Here is an example:

xyz = Parse 'a1ca2ca3c' '2*a' '2*c' 'Exclude'

This sets the variable xyz to '2'.

You can specify several control settings at once, separated by spaces. By default, the
Parse command's control setting is 'Exclude MatchCase' but you could set this to (for
example) 'Include IgnoreCase'.

The Null Decapsulator

Here is a helpful variation of the ―From‖ decapsulator:

'' means ñStart from the first character in the value being analyzedò

A similar variation can be used with the ―To‖ decapsulator:

'' means ñEnd with the last character in the value being analyzedò

If you use the null ('') decapsulator for ―From‖ or ―To‖, the ―found‖ value (the first
character for ―From‖, or the last character for ―To‖) will always be included (see the
section ―Overlapping Decapsulators‖ for an exception to this rule). Here is an
example:

xyz = Parse 'ABCABCABC' '' '2*C"

This sets the variable xyz to 'ABCAB'. The ―From‖ value (i.e. the first character) is not
excluded. However, when Parse finds the ―To‖ value (i.e. the second occurrence of the
letter C) it is excluded. If you want to include the second 'C', you should write the
command this way:

xyz = Parse 'ABCABCABC' '' '2*C' 'Include'

Incidentally, the following two commands accomplish the same thing:

xyz = Parse 'ABCD' '' ''

xyz = 'ABCD'

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

80

They are equivalent because the Parse command means ―Set the variable xyz with
everything between (and including) the first character and the last character‖.

Why Null Decapsulators Work Differently

It may not be immediately obvious why decapsulator-enabled commands treat the null
('') decapsulator differently. The examples given here are very simple, and not
representative of real-world applications.

In day-to-day usage, though, you will frequently find it helpful to be able to specify a
command that says, ―Give me everything from the beginning of the line to just before
such-and-such‖ or ―Give me everything from such-and-such a point until the end of
the line."

For example, here is a command that means ―Give me everything from just after the
dollar sign, to the end of the line":

xyz = Parse 'Please give me $199.00' '1*$' ''

This sets xyz to ―199.00‖. If you want to include the dollar sign, write the command
this way:

xyz = Parse 'P lease give me $199.00' '1*$' '' 'Include'

In this example, the 'Include' control setting affects the way the ―From‖ decapsulator
works, since it is using an occurrence number. The null decapsulator is not affected.

Overlapping Decapsulators

Earlier, it was mentioned that the text found by the null decapsulator is ―always
included‖ and is not affected by the 'Exclude' control setting. There is an exception to
this: if the null decapsulator's ―found text‖ is contained in the text found by the other
decapsulator, it can be affected. For example:

xyz = Parse 'ABCDEFABCDEF' '' '1*AB' 'Exclude'

This command means ―Give me everything between the first character and the first
occurrence of AB‖. Since the two items overlap (i.e. the first 'AB' includes the first
character), the first character does indeed get excluded. As a result, the xyz variable is
set to an empty string ('').

Here is another example.

xyz = Parse 'ABCDEFABCDEF' '>*F' '' 'Exclude'

This command means ―give me everything between the last occurrence of F and the
last character‖. Both decapsulators refer to the same character (i.e. the final 'F'), so it is
excluded. As a result, the xyz variable is set to an empty string ('').

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R S

81

Note: In some circumstances, the FindPosn command is not affected by this
exception. It will do its best to make sense of your request if the decapsulators overlap
and one of them is a null decapsulator.

Parsing Empty Fields

Consider the following command, which is operating on CSV (Comma Separated
Value) data.

xyz = Parse ',,,JOHN,SMITH' '2*,' '3*,'

There is nothing between the second and third comma, so the xyz variable is set to ''
(an empty string).

Now consider this command:

xyz = Parse ',,,JOHN,SMITH' '' ','

You are asking for everything from the first character to the first comma (which also
happens to be the first character). Obviously, there is nothing ―between‖ the two
characters, so the xyz variable would be set to '' (an empty string). This may be what
you wanted, but whenever you are dealing with a field at the beginning or end of data,
and there is a chance the field might be empty, it is a good idea to test your script to
make sure that it does what you expect.

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R

C O M M A N D S

82

Decapsulator Commands

Overview

This section documents the specific decapsulator commands. For a broader overview
of decapsulators, please see the Decapsulators section of this user manual.

Insert

Format Insert v1 d2 v3 [v4]

Examples Insert Var '10' 'Cat' ; Insert 'Cat' at column 10

 Insert Var ' - 1' 'X' ; Insert ' X' before last char

 Insert Var '>*A' 'Y' ; Insert 'Y' before last 'A'

 Insert Var 'B' 'Z' 'Exclude' ; Insert 'Z' after first

'B'

Purpose Inserts v3 into v1 at the position determined by d2

Parameters v1 - Variable being modified

 d2 - Decapsulator

 v3 - Value to insert at the position found by v2

 v4 - Decapsulator control settings

Controls Exclude/Include; IgnoreCase/MatchCase

Defaults v4 = 'Include MatchCase' ("Includeò means ñinsert

beforeò)

Similar Cmds Change, Overlay

Notes If decapsulator d2 is not found, nothing is done.

 Sets $Success ('Y' = decapsulator value was found).

Overlay

Format Overlay v1 d2 v3 [v4]

Examples Overlay MyVar '10' 'Cat' ; Overlay 'Cat' at column 10

 Overlay MyVar '<*A' 'X' ; Overlay first 'A' with 'X'

 Overlay MyVar '3*B' 'Y' ; Overlay third 'B' with 'Y'

 Overlay MyVar '>*C' 'Z' ; Overlay last 'C' with 'Z'

Purpose Overwrites v1 with v3 at the position determined by d2

Parameters v1 - Variable being modified

 d2 - Decapsulator

 v3 - Value to overwrit e at the position found by v2

 v4 - Decapsulator control settings

Controls Exclude/Include; IgnoreCase/MatchCase

Defaults v4 = 'Include MatchCase'

Similar Cmds Change, Insert

Notes If decapsulator d2 is not found, nothing is done.

 If necessary, v1 will be lengthened to make room for

v3.

 Sets $Success ('Y' = decapsulator was found).

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R

C O M M A N D S

83

Parse

Format v1 = Parse v2 d3 [d4 [v5]]

Examples See below

Purpose Parses free - form data

Parameters v1 - Variable being set

 v2 - Value being searched

 d3 - ñFromò decapsulator

 d4 - ñToò decapsulator

 v5 - Decapsulator control settings

Controls Exclude/Include; IgnoreCase/MatchCase; Cut; Relaxed

Defaults d4 = '' (Null decapsulator, meaning ñto the end of the

line")

 v5 = 'Exclude MatchCase'

Similar Cmds FindPos n, ScanPosn

Parse is one of the most powerful commands in the Parse-O-Matic Scripting
repertoire. For an introduction to working with decapsulators (along with many
examples of the Parse command), please see the Decapsulators section of this user
manual.

The “Cut” Control Setting

The Cut control setting removes the text that is found in the variable being examined,
along with the encapsulating text. This technique is particularly useful when using a
technique called ―Left-Peeling‖. Consider the following script:

MyVar = 'John,Aloysius,Smith'

FirstName = Parse MyVar '' ',' 'Cut' ; Cut out first name

MidName = Parse MyVar '' ',' 'Cut' ; Cut out middle name

LastName = MyVar ; Save what's left

This ―peels‖ off fields from the left side of the variable MyVar. It will set the variable
FirstName to 'John', the MidName variable to 'Aloysius', and LastName to 'Smith'.

The “Relaxed” Control Setting

The ―Relaxed‖ control setting lets the ―To‖ decapsulator look for text that may not be
there. If it is not there, the ―To‖ decapsulator is treated like a null ('') decapsulator.

Let us say you are extracting information from the $OutData special variable and some
of the lines you have to parse look like this:

Bob

Fred Smith

Mary Anastasia Jones

John Quincy Publique Sr.

This data is inconsistent, so you cannot predict how many parsing cuts to make. With
the ―Relaxed‖ control setting, this is not a problem.

P A R S E - O - M A T I C U S E R M A N U A L — D E C A P S U L A T O R

C O M M A N D S

84

Consider the following example.

Name1 = Parse $OutData '' ' ' 'Cut Relaxed'

Name2 = Parse $OutData '' ' ' 'Cut Relaxed'

Name3 = Parse $OutData '' ' ' 'Cut Relaxed'

Name4 = Parse $OutData '' ' ' 'Cut Relaxed'

Name = Name1 '/' Name2 '/' Name3 '/' Name4 '/'

TrimChar Name 'R/'

This would set the Name variable to the following values:

Bob

Fred/Smith

Mary/Anastasia/Jones

John/Quincy/Publique/Sr.

The preceding example could, of course, have been accomplished more easily with the
Change command, but it is included here as a demonstration, not a real-world
application.

P A R S E - O - M A T I C U S E R M A N U A L — L O O K U P C O M M A N D S

85

Lookup and Database Commands

Overview

The LookupFile and Lookup commands give Parse-O-Matic Scripting simple database
capabilities: you can use a ―key‖ to look up an item of data. For example, a database of
country abbreviations could look up 'US' (the ―key‖) to find 'United States of America'
(the ―data‖).

The MassChange command can be used to apply search-and-replace edits to a line of
data, based on the information contained in a Lookup file.

Lookup files can be prepared in a text editor program. You can name them anything
you want, though by convention the file names start with Luf and have a .txt
extension (example: LufCustomers.txt).

The ScanFollow command provides a simple form of lookup capability that does not
involve an external file.

Lookup

Format v1 = Lookup v2 t3 [v4]

Example MyVar = Lookup 'Car' 'MyTable' ; Find 'Car' in

'MyTable' table

Purpose Looks up a value in a table read in from an external

file

Parameters v1 - Variable being set (this is t he ñdataò)

 v2 - Value being sought (this is the ñkeyò)

 t3 - Table name (as defined by LookupFile)

 v4 - Control setting

Controls IgnoreCase/MatchCase

Defaults v4 = 'MatchCase' (v2 must match the table's key field

exactly)

Similar Cmds SetFromFile

Notes Sets $Success ('Y' = v2 was found).

Chapter

11

P A R S E - O - M A T I C U S E R M A N U A L — L O O K U P C O M M A N D S

86

LookupFile

Format LookupFile t1 v2 [v3 [v4 [v5]]]

Example LookupFile 'MyTable' 'C: \ MyData \ LufMyDatabase.txt' 3 2

Purpose Reads in a table for use with the Lookup command

Parameters t1 - A name for thi s table (used by the Lookup command)

 v2 - Name of the file being read in

 v3 - Key field number (what you are looking for)

 v4 - Data field number (what you find)

 v5 ï Control setting

Controls Decode/NoDecode

Defaults v3 = 1

 v4 = 2

 v5 = Decode

Restric tions LookupFile reads the entire table into memory. Thus,

multi - megabyte lookup files may cause problems on some

machines.

 (Comments are ignored, so you can use as many as you

want without affecting performance.)

Notes If the filename (v2) does not speci fy a path,

LookupFile will use the Search Path to look for it.

The sample lookup file LufSample01.txt contains comments that explain the
fundamental techniques you will need to define a lookup file.

Here is an example of a lookup file, named ScrSuppliers .txt :

; Lookup file for my suppliers, giving supplier number, name, and phone

number

1,"Pinnacle Software","416 - 287 - 8892"

2,"Fred's Computers","514 - 555 - 1234"

3,"DigiRamaTech","212 - 555 - 4321"

P A R S E - O - M A T I C U S E R M A N U A L — L O O K U P C O M M A N D S

87

This particular lookup file starts with a comment line. The data lines have three fields.
You could look up the first field (the supplier number) to determine the supplier name
or phone number.

The NoDecode control setting turns off the conversion of encoded text (e.g. $0D and
#13). This is occasionally necessary when using a CSV (Comma Separated Value) file
that does not put quotes around text fields. The default setting (Decode) will decode
the string (see ―Untypeable Characters‖).

MassChange

Format MassChange v1 t2 [v3]

Example MassChange MyVar 'MyTa ble' 'IgnoreCase'

Purpose Applies every possible change listed in a Lookup file

Parameters v1 - The variable being changed

 t2 - Table name (as defined by LookupFile)

 v3 - Control setting

Controls IgnoreCase/MatchCase

Defaults v3 = 'MatchCase'

Similar Cmd s Change

MassChange is typically used for applying corrections to common typographical errors,
rationalizing address data (e.g. changing 'app.' to 'Apt.') or for remapping one character
set to another one.

The sample lookup file LufSample01.txt contains comments that explain the
fundamental techniques you will need to perform any of these tasks.

ScanFollow

Format v1 = ScanFollow v2 v3 [v4 [v5]]

Example X = ScanFollow 'C' '/A/B/C/D/E' ; Set variable X to

'D'

Purpose Returns the next item in a character - delimited list

Parameters v1 - Variable being set

 v2 - The value being sought in the list

 v3 - The list (first character defines the list

delimiter)

 v4 - Value to return if v2 is not found or is last in

the list

 v5 - Control setting

Cont rols IgnoreCase/MatchCase

Defaults v4 = Null (empty) string

 v5 = IgnoreCase

Similar Cmds Lookup

ScanFollow looks up a string in a list then returns the next string in the list. It can be
used as a simple lookup tool, or to step through a series of strings.

If using ScanFollow as a lookup tool, remember that (unlike the Lookup command),
ScanFollow does not distinguish between ―key‖ and ―data‖ — it simply finds the first
occurrence of the value being sought and returns the next item in the list.

P A R S E - O - M A T I C U S E R M A N U A L — L O O K U P C O M M A N D S

88

Advanced Database Connectivity

Parse-O-Matic allows the reading and writing to supported ODBC sources.

This allows you to connect to your existing Microsoft SQL Server or Oracle, or almost
any ODBC compliant data server.

You use the SendToDB, in conjunction with $CfgODBCConnection to send and
receive data to your ODBC configured source.

The website http://www.connectionstrings.com currently offers a number of tips on
specifying connection strings.

SendToDB

Format: SendToDB v1 [v2] v3 v4

Example: SendToDB 'select * from customers' 'c: \ holdingfile.csvô

dataholder resultcode

 SendToDB 'update customers set donot contact=1' ''

dataholder resultcode

Purpose:

Parameters: v1 - Command or variable containing command to s end to

database

 v2 - Filename where results returned from the database

should be saved must not exist)

 v3 - Variable to store result set(s)

 v4 - Handled Exception Code. Any unhandled exceptions

will stop the script from running

 100 - Connection string is empty ($CfgODBCConnect ion is

not defined)

 101 - Invalid connection string

 200 - Incorrect file name

 201 - File already exi sts

 If v2 is omitted, result data is not written to the

disk.

Data is exported in separated value format, with the delimiter being used as the one
defined in $CfgDelimiter. That default value is \0

v3 will use up to about 80% of available memory to store any result set. Please clear
out your variables if you are going to be processing very large or millions of records,
that do not need to be reused.

http://www.connectionstrings.com/

P A R S E - O - M A T I C U S E R M A N U A L — C A L C U L A T I O N C O M M A N D S

89

Calculation Commands

Calc

Format v1 = Calc v2 o3 v4

Example MyVar = Calc 3 + 4 ; Set MyVar to 7

Purpose Perform an integer calculation

Parameters v1 - Variable being set

 v2 - First integer number

 o3 - Operation

 v4 - Second integer number

Similar Cmds CalcReal

Notes All extraneous text (i.e. everything but 0 to 9 and the

minus sign) is removed from the values v2 and v4.

 If either v2 or v4 are null, they are interpreted as 0.

The operations used by Calc (and also CalcReal) are as follows:

ððððððððð ðððððððð ððððððððð ðððððððð ððððððððð ðððððððððððððððððððð

Operation Meaning Operation Meaning Operation Meaning

ððððððððð ðððððððð ððððððððð ðððððððð ððððððððð ðððððððððððððððððððð

 + Add * Multiply Highest Pick biggest number

 - Subtract / Divide Lowest Pick smallest number

ððððððððð ðððððððð ððððððððð ðððððððð ððððððððð ðððððððððððððððððððð

The Calc command uses integer division. This means that any remainder is discarded.
Thus, the calculation 10 / 3 will return a value of 3, since 3 goes into 10 three times,
with a remainder of 1 (which is ignored).

The Calc command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic‘s integer
range.

Chapter

12

P A R S E - O - M A T I C U S E R M A N U A L — C A L C U L A T I O N C O M M A N D S

90

CalcReal

Format v1 = CalcReal v2 o3 v4 [v5]

Examples MyVar = CalcReal 3.1 * 4.3 ; Set MyVar to 13.33

 MyVar = CalcReal 10.0 / 3.0 5 ; Set MyVar to 3.33333

Purpose Perform a real - number calculation

Parameters v1 - Variable being set

 v2 - First real number

 o3 - Operation

 v4 - Second real number

 v5 - Number of decimal places

Defaults v5 = 2

Similar Cmds Calc

Notes All extraneous text (i .e. everything but 0 to 9, the

minus sign and the decimal point) is removed from v2

and v4.

 If either v2 or v4 are null, they are interpreted as

0.0.

 By default, operations with fixed decimal places are

subject to rounding. See the Rounding command for

details.

For a list of operations, see the Calc command.

Real number operations have 18 valid digits across the range (expressed in scientific
notation) of

3.6 x 10^ ï4951 to 1.1 x 10^4932

If you are working with very large numbers, it is a good idea to write some
experimental scripts to determine if the accuracy you require can be obtained.

If v5 is set to ―Float‖, CalcReal will calculate as many decimal places as it possibly can.
Before you do this, however, you should be aware that when computer calculations are
taken to the limit of the software's precision, it can result in inaccuracy.

Dec

Format Dec v1 [v2]

Example Dec MyVar 3 ; Subtract 3 from variable MyVar

Purpose Decrements (decreases) an integer number

Parameters v1 - Variable being se t

 v2 - The amount by which to decrement v1

Defaults v2 = 1

Similar Cmds Inc

Notes Decrementing with a negative value increases v1

The Dec command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic‘s integer
range.

P A R S E - O - M A T I C U S E R M A N U A L — C A L C U L A T I O N C O M M A N D S

91

Inc

Format Inc v1 [v2]

Example Inc MyVar 3 ; Add 3 to variable MyVar

 Inc MyVar ; Add 1 to variable MyVar

Purpose Increments (increases) an integer number

Parameters v1 - Variable being set

 v2 - The amount by which to increment v1

Defaults v2 = 1

Similar Cmds Dec

Notes Incrementing with a negative value decreases v1

The Inc command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic‘s integer
range.

Rounding

Format Rounding c1

Example Rounding 'Yes'

Purpose Turns rounding - up on or off for fixed - place answers

calculated by the CalcReal command

Parameters c1 - 'Yes' or 'No' ('Yes' = Round - up the answers)

Notes Turning off rounding is not recommended . By default,

rounding - up is on . If you turn it off, the answers are

simply truncated according to the number of fixed

decimal places. If you do this, you should be aware of

the problems inherent i n computer calculation. For

details, see CalcReal.

Fixed-place numbers are rounded-up by adding 5 to the next-lowest position. So 4.56
with one fixed-decimal place is rounded by adding 0.05, yielding 4.61, which truncates
to '4.6'. If the answer is negative, the adjustment is subtracted rather than added, so -
4.56 with one fixed decimal becomes '-4.6'.

P A R S E - O - M A T I C U S E R M A N U A L — D A T E A N D T I M E

C O M M A N D S

92

Date and Time

Commands

Overview

All date-oriented commands that involve calculations (e.g. AddDays and
AddWeekDays) are limited to the years 1900 to 2999. These commands normally
expect to see the year expressed with four digits (e.g. 2009), but if you pass them a two-
digit year they will try to guess the appropriate millennium. That is to say, if the two
digits are in the range 80 to 99, the year will be taken to mean 1980 to 1999.

When using commands that handle date and time, you should be careful that you are
specifying valid values. For example, if you set the hour to 999 the program will
terminate with an explanatory error message.

DateTimeFormat

Format v1 = DateTimeFormat v2 v3 v4 v5 v6 v7 v8

Examples DateTime = DateTimeFormat 2008 12 25 17 29 30 'Y - ?N- ?D

H:?I?S'

 DateOnly = DateTimeFormat 2009 12 25 '' '' '' 'Y - ?N- ?D'

 TimeOnly = DateTimeFormat '' '' '' 17 29 '' '? h:?I a'

Purpose Formats a date or time, or both, into a text string

Parameters v1 = Variable being set

 v2 to v4 = Year, Month, Day (all may be set to null if

not used)

 v5 to v6 = Hour (24 - hour), Minute, Second (all may be

set to null)

 v8 = Date and tim e format codes (explained below)

Controls See ñDate and Time Format Codesò

Date and Time Format Codes

Codes Explanations

 ? Padding position to prefix a zero to a single - digit value

 a Ante Meridiem or Post Meridiem, in lowercase: am or pm

 A Ante Me ridiem or Post Meridiem, in uppercase: AM or PM

 D Day of the month

Chapter

13

P A R S E - O - M A T I C U S E R M A N U A L — D A T E A N D T I M E

C O M M A N D S

93

 h Hour of the day (12 - hour clock)

 H Hour of the day (24 - hour clock)

 I Minute of the hour

 m Month of the year (three letters, capitalized)

 M Month of the year (three letter s, uppercase)

 N Month of the year (numeric)

 S Second of the minute (numeric)

 t Month of the year (full name, capitalized)

 T Month of the year (full name, uppercase)

 Y Four - digit year (if input is two digits, 80 to 99 yield 1980 to

1999)

 y Two- digit year (if input is four digits, first two digits are

dropped)

Examples

Sample Format Settings Sample Results Comments

'M ?D ?y' JAN 12 09

'm ?D ''?y ?H:?I:?S a' Feb 22 '09 04:01:23 am

't D, Y, H:?I A' July 4, 1981, 2:01 PM

't D, Y, ?H:?I :?S' May 4, 1981, 14:01:02

'?D/?N/?y' 01/02/03 European date

format

'?N/?D/?y' 02/01/03 Date format in USA

'Y - ?N- ?D' 2003 - 02- 01 IS0 8601

international date

AddDays

Format AddDays v1 v2 v3 v4

Example AddDays MyYear MyMonth MyDay 14

Pur pose Adds the specified number of days to the specified date

Parameters v1 to v3 = Year, Month and Day (these must be

variables)

 v4 = Number of days to add (if negative, days are

subtracted)

Similar Cmds AddWeekDays

Notes Please see the ñOverviewò section for more information

about working with date data.

 If v4 = 0 then the date is not changed.

AddWeekDays

Format AddWeekDays v1 v2 v3 v4 [t5]

Example AddWeekDays MyYYYY MyMM MyDD 23 'MyHolidays'

Purpose Adds the specified number of weekd ays to the specified

date, optionally skipping holidays as well (if t5 is

specified)

Parameters v1 to v3 = Year, Month and Day (these must be

variables)

 v4 = Number of days to add (if negative, weekdays are

subtracted)

 t5 = Table name defined by the Look upFile command

Defaults If t5 is not specified, AddWeekDays will skip only

Saturdays and Sundays.

Restrictions If a holiday is not listed in the table specified by

P A R S E - O - M A T I C U S E R M A N U A L — D A T E A N D T I M E

C O M M A N D S

94

t5, AddWeekDays does not know about it.

Similar Cmds AddDays

Notes Please see the ñOverviewò section for more information

about working with date data.

 If v4 = 0 then the date is moved forward to the next

day that is considered a weekday (i.e. holidays are

also skipped).

Two sample lookup files for holidays are available from Pyroto, Inc. The files are:

LufHolidaysCanada.txt

LufHolidaysUSA.txt

These list the holidays for Canada and the USA. The Canadian file contains extensive
notes on calculating and adding new holidays, and also explains how you can create a
custom holiday file.

We strongly recommend reviewing a holiday lookup file before using it. Some holidays
that are included in the files mentioned above are ―commented out‖ because they are
not celebrated nationally. You can edit a copy of the file (and give it a different name)
by using a text editor such as Windows Notepad.

Note: If you create a lookup file for holidays in a country other than the ones we have
included, we would be most appreciative if you would send us a copy.

DayOfTheWeek

Format v1 = DayOfTheWeek v2 v 3 v4 [v5]

Example DayName = DayOfTheWeek 2010 12 25

'/Sun/Mon/Tue/Wed/Thu/Fri/Sat'

Purpose Sets v1 to the name of the day of the week

Parameters v1 = Variable being set

 v2 to v4 = Year, Month, Day

 v5 = List of day names

Defaults v5 = '/1/2/3/4/5/6/7' (1 = Sunday)

Notes Please see the ñOverviewò section for more information

about working with date data.

If you specify the names of the days of the week (v5), you must list all 7 days (starting
with Sunday). The first character in the list is taken as the delimiter. The usual choice is
the slash character, but a different character could be used, as long as it does not appear
in any of the day names.

Now

Format v1 = Now [v2]

Example MyDateTime = Now 'Y - ?N- ?D H:?I?S'

Purpose Sets v1 to the current date, or time, or both

Parameters v1 = Variable being set

 v2 = Date and time format codes (see ñDateTimeFormatò)

Defaults v2 = 'Y/?N/?D' (e.g. 2010/12/25)

Similar Cmds DateTimeFormat

Notes Please see the ñOverviewò section for more information

about worki ng with date data.

P A R S E - O - M A T I C U S E R M A N U A L — B I N A R Y C O N V E R S I O N

C O M M A N D S

95

Binary Conversion

Commands

Overview

The binary conversion commands deal with transformation of data between a
computer‘s representation (e.g. 10110111) and human-readable format (e.g. plain text).

A computer program that uses the ASCII character set will internally represent the
letter A with the number 65 (or, more accurately, the binary value 01000001). This is
not normally an issue, since a program designed to work with ASCII characters will
show you the letter A on the screen. However, if the data is stored in the EBCDIC
character set then the letter A will be represented by a different number. In such case
you may need to convert the EBCDIC representation to the ASCII representation.
Fortunately, this is quite easy to do, and a sample script to perform this conversion is
available in the Pyroto, Inc. Knowledge Base (available via our web site, at
www.Parse-O-Matic.com).

A more difficult problem arises when an input file contains numbers in ―raw binary‖.
That is to say, numbers in the file do not appear in plain text (e.g. '123'). Rather, they
are represented in a form that is familiar to the computer, so the number 123 might be
represented as 01111011 (hexadecimal $7B).

Further complicating the issue is the fact that computers can represent numbers in
various ways. 123 can also be represented by 0111101100000000. This looks very
similar – after all, it is the same 8 bits as shown previously, followed by 8 zero bits –
but in this case the number is being represented as a 2-byte value instead of a 1-byte
value. The specific representation used by a number can be very important. If you
translate a number using the wrong technique you could end up showing incorrect
values, such as misinterpreting 255 as -1.

A final twist to this problem is that the various representations for numbers do not
always have the same names. The word ―byte‖ always means ―8 bits‖, but even here
we can run into trouble. A ―byte‖ is sometimes known as an ―octet‖, and sometimes it

Chapter

14

P A R S E - O - M A T I C U S E R M A N U A L — B I N A R Y C O N V E R S I O N

C O M M A N D S

96

is assumed that one of the bits (the high bit) is not used, or is used for a purpose other
than representing data (i.e. it is a ―parity bit‖). The term ―word‖ can refer to one byte,
two bytes, four, eight bytes or more, depending on the context.

For this reason, the binary conversion commands do not refer to data representations
using traditional terminology such as ―byte‖, ―word‖ and ―integer‖. Rather, they use
―Parse-O-Matic Conversion Codes‖ to avoid confusion. For example, ―I1U‖ means
―Integer, 1 Byte, Unsigned‖. This can only refer to an 8-bit value that holds a value
from 0 to 255. A complete list of the Parse-O-Matic Conversion Codes is shown
below.

Parse-O-Matic Conversion Codes

For the reasons given in the Overview (above), Parse-O-Matic refers to data
representations using ―Conversion Codes‖ rather than standard terms such as ―byte‖,
―word‖, ―integer‖, ―long integer‖ and so on.

Here is a list of the conversion codes:

Code Definition Some Conventional Names (see

Note)

I1U Integer, 1 Byte, Unsigned Byte, Octet

I1S Integer, 1 Byte, Signed ShortInt, Byte

I2U Integer, 2 Bytes, Unsigned HalfWord, Word

I2S Integer, 2 Bytes, Signed Integer, HalfWord

I4U Integer, 4 Bytes, Unsigned DoubleWord, LongWord, Word

I4S Integer, 4 Bytes, Signed Integer, LongInt, Cardinal

I8S Integer, 8 Bytes, Signed DoubleWord, Int64, QuadWord

R4S Real, 4 Bytes, Signed Real, Single

R6S Real, 6 Bytes, Signed Real, Real48

R8S Real, 8 Bytes, Signed Double, Real

R10S Real, 10 Bytes, Signed Comp, Extended

R8$ Real (4 places), 8 Bytes,

Currency

Currency

HEX Hexadecimal text (e.g. 'F0') Hex string

BIN Binary text ('1111_0000') (Used only in Parse - O- Matic)

BIC Binary text compressed

('11110000')

Binary string

Note: The conventional names should not be taken too seriously. A

"word", for example, might refer to 1, 2, 4, 8 or more bytes, depending

on the context. Different computers and different computer languages

may use the same term to refer to completely different things.

These codes are not supported by all conversion commands. For example, you cannot
convert from BIC format to I1U format. (In actual conversion applications, that
particular transformation would almost never be required.)

You may occasionally encounter data representations that are not yet supported by
Parse-O-Matic. For example, at the moment we do not translate the COMP data types
used by COBOL programs. If you encounter an unsupported data type you can

P A R S E - O - M A T I C U S E R M A N U A L — B I N A R Y C O N V E R S I O N

C O M M A N D S

97

inquire about our schedule for adding the feature, and in the meantime you can use the
CalcBinary command to transform the data into a form that is supported.

BinaryToText

Format v1 = BinaryToText v2 v3 [v4]

Example MyByte = BinaryToText $Data[20] 'I1U'

Purpose Returns the text representation of raw binary data

Parameters v1 = Variable being set

 v2 = Value being converted

 v3 = Parse - O- Matic Conversion Code (see ñParse - O- Matic

Conversion Codesò, in the ñOverviewò section)

 v4 = Control setting (decimal places for real number

conversions)

Defaults v4 = 2

Similar Cmds TextToBinary

Notes Please see the ñOverviewò section for background

details

All computer data is, of course, binary data at some level. The BinaryToText command
is therefore a data format converter. For example, you can transform the value $FF
into the string '255' or '-1', depending on the conversion code you use. $FF would
produce '255' if you used the conversion code 'I1U' (Integer, 1 byte, Unsigned) and '-1'
if you used 'I1S' (Integer, 1 Byte, Signed).

When we speak of conversion to ‗text‘, we are referring to the fact that all variables in
Parse-O-Matic Scripting are expressed as human-readable text. To provide the ability
to develop scripts quickly, there are no ―data types‖ such as Integer, Real and so on,
and no need to ―declare‖ the variables you are using. So the Parse-O-Matic Engine
decides that ‗1234‘ is an integer number if it used in a context where that matters, such
as the Calc command. Similarly, it decides that '1234.56' is a real number if it is fed into
the the CalcReal command.

The BinaryToText command provides you with the ability to translate from ―typed‖
data that you find in a raw binary input file into the generalized ―text‖ format used by
Parse-O-Matic Scripting. This means that the resulting value can be fed into
Parse-O-Matic commands, or send to an input file.

The sample script ScrPSTMain provides many examples (with explanatory comments)
of data format conversion using the BinaryToText command.

P A R S E - O - M A T I C U S E R M A N U A L — B I N A R Y C O N V E R S I O N

C O M M A N D S

98

CalcBinary

Format v1 = CalcBinary v2 v3 v4

Example ShiftedByte = CalcBinary $Data[20] 'SHL' 1

Purpose Returns the result of a binary operation (e.g. XOR,

SHL)

Parameters v1 = Variable being set

 v2 = A value upon which the operation is being

performed

 v3 = The name of the operation

 v4 = The second value for the operation

Notes Unlike Calc and CalcReal, the operation name (v3) must

be in quotes

The CalcBinary command lets you manipulate data at the bit level. This can be useful
for data format conversions that are not currently supported by the BinaryToText
command. It is also useful for data decryption, CRC generation and so on.

In keeping with Parse-O-Matic‘s avoidance of data types (i.e. everything looks like
text), you can perform the CalcBinary operations on data of any length. Thus, you
could perform the ROR operation on a single byte, or hundreds of bytes.

Here is a summary of the operations supported by the CalcBinary command:

Name Description Notes

AND Logical And v2 and v4 must be the same length

NAND Logical Not - And v2 and v4 must be the same length

OR Logical Or v2 and v4 must be the same length

SHL Shif t Bits Left v4 specifies number of bits to shift

SHR Shift Bits Right v4 specifies number of bits to shift

XOR Exclusive Or v2 and v4 must be the same length

ROL Rotate Bits Left v4 specifies number of bits to rotate

ROR Rotate Bits Right v4 specifies number of bits to rotate

If you want to perform a simple ―NOT‖ operation (i.e. flipping bits from 0 to 1 and
vice-versa), use the NAND operation, pairing $FF with every byte you want flipped
and $00 with every byte you do not want flipped.

The SHL and SHR commands are similar to the ROL and ROR commands, except
that the latter commands ―recycle‖ the shifted bits to the other end of the data. In the
case of SHL and SHR, on the other hand, bits shifted left or right are lost, with the
―new‖ bits being set to 0.

The sample script ScrPSTMain provides many examples (with explanatory comments)
of the CalcBinary command in action.

TextToBinary

Format v1 = TextToBinary v2 v3

Example RawIntegerSigned = TextToBinary 'I2S' - 1234

Purpose Returns the value encoded as the specified data type

Parameters v1 = Variable being set

 v2 = Parse - O- Matic Conversion Code (see ñParse - O- Matic

P A R S E - O - M A T I C U S E R M A N U A L — B I N A R Y C O N V E R S I O N

C O M M A N D S

99

Conversion Codesò, in the ñOverviewò section)

 v3 = The value being converted

Restrictions Conversion to the BIN, BIC, H EX and R8$ data types is

not supported

Similar Cmds BinaryToText

Notes Please see the ñOverviewò section for background

details, and the ñBinaryToTextò command for a

discussion of how Parse - O- Matic manages to avoid

requiring data types in scripts.

The TextToBinary command is the flip side of the BinaryToText command. You will
typically use TextToBinary command if you are creating a raw binary output file which
must contain ―typed‖ data such as Signed Integer.

The sample script ScrPSTMain provides many examples (with explanatory comments)
of the TextToBinary command.

P A R S E - O - M A T I C U S E R M A N U A L — R E P O R T I N G C O M M A N D S

100

Reporting Commands

Overview

The log commands (such as LogMsg) send text to the log file, which is typically used to
record non-critical information. If you have a critical message (such as a serious error),
you should use the Stop command.

LogDb

Format LogDb v1 [v2 v3 v4...]

Purpose Same as LogMsg, but separates the fields with vertical

bars

Parameters Same as LogMsg

Similar Cmds OutRuler

You can use the LogDb (―Log Debug‖) command while developing or fixing a script.
The vertical bars let you see if the variables have spaces on either side. Once your script
is working properly, you can do a quick search for ―LogDb‖ to see if you left behind
any debug lines.

LogMsg

Format LogMsg v1 [v2 v3 ...]

Example LogMsg 'Invalid value ' CustNum ' in customer number

field'

Purpose Sends a message to the log file

Parameters v1 - Value to send to the log file

 v2 - Value (any number of values can be appended)

LogMsgLF

Format LogMsgLF

Purpose Sends a blank line to the log file. The blank line is

ignored if there is already a blank line at that

position. By using LogMsgLF instead of LogMsg(''), you

can ensure that the log file does not contain multiple

blank lines in a row.

Chapter

15

P A R S E - O - M A T I C U S E R M A N U A L — R E P O R T I N G C O M M A N D S

101

ShowNote

Format ShowNote v1 [v2 v3 v4...]

Example ShowNote 'Processing database'

Purpose Displays an informational message on the user interface

window

Parameters v1 - The informational message

 v2 - Value (any number of values can be appended)

Notes To remove the message, set it to null: ShowNote ''

PlaySound

Format PlaySound v1

Example ShowNote 'c: \ windows \ media \ ding.wav'

Purpose Plays a sound file asynchronously

Parameters v1 ï Path and name of wav file

Notes Wav file must use PCM encoding

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

102

Flow Control Commands

Overview

Parse-O-Matic's flow control commands (such as If, Begin, End, Again, Stop) let you
control the order in which the lines of your script are executed. You can, for example,
execute a block of commands only under certain circumstances, or cause a group of
commands to be executed repeatedly (―looping‖). You can also define generalized
procedures to save you having to duplicate code.

Again

Format Again [v1 k2 v3]

Examples See the Begin command

Purpose Causes a Begin block to repeat if the comparison is

true (or if no comparison is specified)

Parameters v1 - Value to be compared

 k2 - Comparator

 v3 - Value to compare to v1

Restrictions You cannot combine an Again co mmand with an If command.

Begin

Format Begin [v1 k2 v3]

Example Begin MyVar = 'XYZ' ; Execute block if MyVar equals

'XYZ'

Purpose Marks the start of a conditional block of script code

Parameters v1 - Value to be compared

 k2 - Comparator

 v3 - Value to compare to v1

Defaults If no comparison is specified, the block always begins.

In such case, it makes no sense to have an Else

command, and it almost invariably means that the block

will end with an Again command.

Restrictions You cannot comb ine a Begin command with an If command.

Similar Cmds If

Notes Comparisons are not case - sensitive, so 'CAT' = 'Cat'

(unless you have altered the CompareCtrl setting).

 The Begin command does not set the $Success variable!

 Begin blocks can be nested up to 2 5 levels deep.

Chapter

16

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

103

Here is an example of the Begin command, used with Else and End:

Begin MyVar = 'Cat'

 OutEnd 'The animal is feline' ; Executed if MyVar = 'Cat'

 OutEnd 'In fact, it is a cat' ; Executed if MyVar = 'Cat'

Else

 OutEnd 'The anima l is not feline' ; Executed if MyVar is not 'Cat'

End

Note the use of indentation. Indentation of the conditional code blocks is not
mandatory, but it does make a complicated script much easier to understand. This is
particularly important if a Begin block contains other Begin blocks:

Begin CustCode[1 3] = 'USA'

 OutEnd 'The customer is in the USA'

 Begin CustCode[4 5] = 'NY'

 OutEnd 'The customer is in New York'

 End

 Begin CustCode[4 5] = 'TX'

 OutEnd 'The customer is in Texas'

 End

End

Without the indentation, the logic of the code above would be hard to follow.

Here is an example of the Begin command used in a loop:

Counter = 0

Begin

 Counter = Counter+

 OutEnd 'The counter equals ' Counter

Again Counter #< 10

This would output the numbers from 1 to 10. You could also do it this way:

Counter = 0

Begin Counter #< 10

 Counter = Counter+

 OutEnd 'The counter equals ' Counter

Again

This would output the numbers from 1 to 10.

If you wish, you can put comparisons on both the Begin and Again. Both tests are
repeated on every iteration of the loop.

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

104

Break

Format Break

Example If CustNum = MaxCustNum Break

Purpose Breaks out of the current Begin/Again block, carrying

on execution at the line following the next Again

command

Similar Cmds Continue

Call

Format Call v1 [v2 v3 v4...]

Example Call MyProcedure 'Hello!' ; Pass 'Hello!' to

MyProcedure

Purpose Invoke a generalized section of script code passing

information to and receiving results back from the

Procedure

 v2 - Value (any number of values can be appended)

Defaults If v2 is not specified, the procedure variable v1 is

assigned a null value.

Restrictions Calls from procedures into other procedures, which in

turn call other procedures (and so on), can nest up to

50 levels deep.

When you Call a procedure, execution of the script jumps to the first line of the
procedure and continues until the corresponding End statement. The name of the
procedure is also the variable name containing any parameters passed in v2, v3 and so
on (the values are concatenated). Here is a sample script:

Call OutWithExclaim 'Hello, ' 'world' ; Call the procedure

OutEnd 'Glad you could join us!' ; This line is run after the Call

Stop ; Stop running script lines

Pro cedure OutWithExclaim ; Start of the procedure

 OutWithExclaim = OutWithExclaim '!' ; Add an exclamation point

 OutEnd OutWithExclaim ; Output

End ; Return to the line after the

Call

This would output the string 'Hello, world!' then return to the line following the Call
command.

Continue

Format Continue

Example If Status = 'Ignore' Continue

Purpose Jumps ahead to the Again of the current Begin/Again

block

Similar Cmds Break

Done

Format Done

Purpose Skips the rest of the script (for the current record)

Similar Cmds Stop, NextFile, NextStep

Notes The Done command is usually used with the If command,

or at the end of a Begin/End block.

Here is an example of the Done command:

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

105

If EmployeeNum <> 1234 Done

In this case, we are checking to see if the variable EmployeeNum is equal to 1234. If it
is not, we skip the remainder of the current processing step.

Else

Format Else

Example See the Begin command

Purpose Def ines the start of the conditional code block that is

executed if the Begin comparison is false.

Restrictions You cannot combine an Else command with an If command.

End

Format End

Examples See the Begin command

Purpose Marks the end of a Begin b lock

Restrictions You cannot combine an End command with an If command.

Exit

Format Exit

Purpose Immediately returns from a Procedure

Restrictions The Exit command can only be used inside a Procedure.

The Exit command is typically used in conjunction with a comparison. You do not
need to include an Exit command in every Procedure; it is used to skip the rest of the
procedure if some condition is met. For example:

Procedure AdjustPhoneNumber

 TrimChar PhoneNumber 'A ' ; Remove spaces

 Change PhoneNumber '/' ' - ' ; Tidy up format

 Change PhoneNumber '.' ' - ' ; Tidy up format

 AreaCode = PhoneNumber[1 3]

 If AreaCode = '416' Exit

 If AreaCode = '905' Exit

 PhoneNumber = '1 - ' PhoneNumber

End

In this example, the procedure puts '1-' in front of a phone number unless it starts with
416 or 905.

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

106

If

Format If v1 k2 v3 c4

Examples If CustCode = 'AB12' OutEnd 'Mary Smith'

 If CustCode = 'CD34' CustAddr = '1234 Happy Lane'

Purpose Conditionally performs a command

Parameters v1 - Value to be compared

 k2 - Comparator

 v3 - Value to compare to v1

 c4 - Command

Restrictions The If command may not be combined with a command that

defines the start of a code block, such as Begin or

FileInit.

Similar Cmds Begin, Again

Notes The compariso n is case - insensitive, so 'CAT' = 'cat'

unless you have altered the CompareCtrl setting.

 The If command does not set the $Success variable!

In deference to the ingrained training of seasoned programmers, you may use the word
―then‖ after the comparison. Thus, the following command will be accepted:

If x > y then z = 'Hello'

This usage is non-standard, however, and is not recommended. The scripting engine
treats the ―then‖ as a variable, but ignores it in this context. Thus, you should never use
a variable named ―Then‖.

The If command does not have an ―Else‖ option as in most programming languages.
To execute a command when the If condition is false, use the Otherwise command.
Alternatively, you can use the Begin command with an Else section.

Otherwise

Format Otherwise c1

Example If Animal = 'Cat' Type = 'Feline' ; The initial If

command

 Otherwise Type = 'Non - feline' ; Action taken if

false

Purpose Executes an alternative command when the If comparison

is false

Parameters c1 - Command

Restrictions The Otherwise command must follow immediately after an

If.

 The Otherwise command may not be combined with a

command that defines the start of a code block, such as

Begin or FileInit.

Similar Cmds Else

Procedure

Format Proce dure v1

Example Procedure MyCode

Purpose Defines the start of a generalized section of script

code, which is terminated with the End command

Parameters v1 - The name of the Procedure (must be a simple

variable)

Restrictions Recursive procedures (i.e. proce dures that call

P A R S E - O - M A T I C U S E R M A N U A L — F L O W C O N T R O L

C O M M A N D S

107

themselves) are not formally supported and their use is

not recommended.

Notes See the Call command for additional details about

procedures.

As the script is being run, any Procedure sections are ignored when encountered; they
are only executed when explicitly invoked by Call. Procedures can go anywhere except
within conditional blocks such as Begin/End, FileInit/End and so on. Procedures are
usually placed together at the end of the script.

Stop

Format Stop [v1]

Example If Cust Num[1] = 'X' Stop 'Invalid customer number'

Purpose Terminates further processing

Parameters v1 - Optional pop - up message

Similar Cmds Done, NextStep

Notes If v1 is included, a pop - up message is displayed. In

such case, the Stop is considered an ñabnormalò end of

processing and the script - enabled application should

proceed accordingly.

P A R S E - O - M A T I C U S E R M A N U A L — S T E P C O N T R O L

108

Step Control

Overview

A simple script runs from top to bottom each time a record is sent to it. But how can
you initialize variables before processing starts? How can you output a grand total after
all the records have been processed?

These issues and others are addressed by the step control commands.

When processing files, Parse-O-Matic performs a series of steps:

TaskInit Executes before data is read from the first input file

FileInit Executes before data is read from the current input file

Main Executes once for each record sent to the script

FileDone Executes after the last data is read from the current input

file

TaskDone Executes after the last data is rea d from the last input

file

If you are only processing a single file (i.e. you are not using wildcards to process
multiple input files), there is little to distinguish TaskInit and TaskDone from FileInit
and FileDone.

Using Step Control

Except for the Main step, each step appears inside a conditional block, as in this
example:

TaskInit ; Start of the TaskInit step

 OutEnd 'Customer Count Report' ; Report header

 OutEnd ' --------------------- ' ; Report header

End ; End of the TaskInit step

FileInit ; Start of the FileInit step

 OutEnd 'Input file: ' $ActualIFN ; Output the file name

 NumInpFiles = NumInpFiles+ ; Count this input file

End ; End of the FileInit step

CustCount = CustCount+ ; Main step: count record

TaskDone ; Start of the TaskDone step

 OutNull ; Output a blank line

 OutEnd 'Number of input files: ' NumInpFiles ; Output statistics

 OutEnd 'Number of customers: ' CustCount ; Output statistics

End ; End of the TaskDone step

In the example given above, the conditional code for the report header was placed in
TaskInit so that the script will output it only once, even if you are processing multiple
input files.

The conditional steps are optional. For example, you do not have to include FileInit in
your script.

The conditional steps can appear almost anywhere in your script (though not within
another conditional block).

P A R S E - O - M A T I C U S E R M A N U A L — S T E P C O N T R O L

109

FileInit and FileDone

The FileInit section is executed before each input file is processed. The FileDone
section is executed after each input file is processed.

You cannot combine the FileInit or FileDone commands with the If command.

TaskInit and TaskDone

The TaskInit section is executed before data is read from the first input file. The
TaskDone section is executed after the last record is read from the last input file and
has been processed by the Main step.

You cannot combine the TaskInit or TaskDone commands with the If command.

NextStep

The NextStep command can be used to jump out of a step (such as FileInit or Main)
and proceed to the next step.

For example, if your Main step has already located the information you are seeking,
there is no reason to continue reading the input file. In such case, you can execute a
NextStep command to ignore the rest of the input file and proceed immediately to
FileDone, as in the following example.

CustNum = $OutData[1 6] ; Main step: Get customer number

PhoneNum = $OutData[60 70] ; Main step: Get the phone number

If CustNum = '314159' NextStep ; Main step: Found the customer?

FileDone ; Start of the FileDone step

 OutEnd 'Phone Number = ' PhoneNum ; Output the information we sought

End ; End of the FileDone step

NextStep should not be confused with the Stop command, which causes processing to
cease entirely.

NextStep is also different from Done, which skips the rest of the script and then (if
used in the Main step) proceeds to process the next record from the input file. The
Done command can, however, be used within a conditional step block (such as
FileInit) to skip the rest of that step; in such case it will behave the same way as
NextStep.

P A R S E - O - M A T I C U S E R M A N U A L — S T E P C O N T R O L

110

NextFile

The NextFile command jumps out of the FileInit, Main or FileDone step without
processing any of the remaining file-oriented steps. For example, if you execute
NextFile in the FileInit step you will skip the Main and FileDone steps. (NextFile
cannot be used in the TaskInit or TaskDone steps, since these steps are not dealing
with a particular file.)

NextFile is used when an input file is rejected for some reason. It may have a serious
formatting error, or (if you are using wildcards) it might not precisely match the kind of
file name you are looking for.

If you are indeed using wildcards, NextFile will proceed to the FileInit step for the next
input file. If your script is working on the last input file, NextFile will cause the script to
move to the TaskDone step.

Here is an example of NextFile, as it might be used in the Main step:

Begin $Data[1 10] <> 'EMPLOYEE #'

 LogMsg $ActualIFN ' is not formatted correctly'

 HadError = 'Y'

 NextFile

End

In this case, the file did not contain the data we expected, so we log the error and move
on to the next input file. In such case, it is a good idea to set a flag (HadError in this
case) so that the TaskDone step can issue a warning:

TaskDone

 If HadError = 'Y' Stop 'One or more errors were detected. ' >>

 'Please consult the log file.'

End

Simply logging errors is no guarantee that the user will be aware that there was a
problem, so we point out that the log does indeed contain some important
information.

P A R S E - O - M A T I C U S E R M A N U A L — M A N U A L R E A D C O M M A N D S

111

Manual Read Commands

Overview

Parse-O-Matic reads a file from top to bottom and feed the input file data to the script
one record at a time. In most cases there is no need for Parse-O-Matic to behave
differently. However, occasionally a parsing challenge arises in which the script writer
needs to go backwards and forwards in a file, or needs to read in new data according to
varying criteria. The Manual Read commands address these requirements.

RecLenZero Scripts

Manual Read commands are essential is when your script is figuring out for itself how
many characters to get for each record. In such case, your script must configure the
input file as binary and specify a record length of zero. This is known as a RecLenZero
script. Here is a sample script.

Config

 $CfgInpFileType = 'Binary'

 $CfgRecLen = 0

End

$Data = ReadFor 100 'Relaxed'

OutEnd $Data

With a record length of zero, the Parse-O-Matic application will never read a single
byte from the input file. Thus, the first line of the Main step in a RecLenZero script is
typically a ReadFor or ReadUntil command. These commands and others are
described below.

Using Manual Read for Standard Input File Types

Most Manual Read commands work in the standard input modes (such as TextCR)
and one of them (ReadNext) does not do anything in a RecLenZero script (i.e. when
$CfgRecLen is set to zero).

Chapter

17

P A R S E - O - M A T I C U S E R M A N U A L — M A N U A L R E A D C O M M A N D S

112

Bookmark

Format Bookmark v1 v2

Example Bookmark 'Save' 'MyBookmark'

Purpose Remembers or returns to the current position in the

input file

Parameters v1 - 'Save' or 'Goto'

 v2 - The name of the bookmark

Similar Cmds Rewind

Notes The number of bookmarks you can save is limited only by

your computer's memory.

ReadEOF

Format ReadEOF

Example TestEOF = ReadEOF

Purpose Tests if the file pointer is positioned at the end of

the input file

Similar Cmds The $EndOfData variable

Notes Returns 'Y' if at end of file, 'N' otherwise.

Since ReadEOF is a function, it cannot be used in a comparison command such as If
or Begin. You can use the special variable $EndOfData for that purpose, or you can
save the value of ReadEOF in a variable for later use. Both methods are useful for
determining if the input file contains any more data.

ReadFor

Format v1 = ReadFor v2 [v3]

Example MyVar = ReadFor 1000 'Relaxed'

Purpose Reads the specified number of bytes from the input file

Parameters v1 - Variable being set

 v2 - Number of bytes to read

 v3 - Control setting

Controls Strict/Relaxed

Defaults v3 = 'Strict'

Similar Cmds ReadUntil, Rewind

Notes ReadFor does not update Data or PrevData.

 If v2 is zero or negative, v1 is set to null.

 If v3 is 'Relaxed', no error message is generated if

you attempt to read past the end of the file.

ReadNext

Format ReadNext

Purpose Moves to the next record in the input file

Similar Cmds ReadUntil, ReadFor

P A R S E - O - M A T I C U S E R M A N U A L — M A N U A L R E A D C O M M A N D S

113

The ReadNext command updates $Data with the next record from the input file. This
is helpful if you know for certain what kind of data will be in the next record and wish
to process it at the current point in the script.

ReadNext cannot be used in RecLenZero scripts, since when $CfgRecLen is set to
zero Parse-O-Matic does not know how you are defining a ―record‖. In such case you
should use a command such as ReadUntil or ReadFor.

P A R S E - O - M A T I C U S E R M A N U A L — M A N U A L R E A D C O M M A N D S

114

ReadUntil

Format v1 = ReadUntil v2 [v3]

Example MyData = ReadUntil #13#10 'Relaxed'

Purpose Reads from the input file until the specified string is

found

Parameters v1 - Variable being set

 v2 - String to search for

 v3 = Control setti ngs

Controls Include/Exclude; Strict/Relaxed

Defaults v3 = 'Exclude Strict'

Similar Cmds ReadFor

Notes In Include mode, the string being sought is included in

v1.

 If v2 is null, the program will terminate with an error

message.

 If v3 is 'Relaxed', no err or message is generated if

you attempt to read past the end of the file.

Rewind

Format Rewind v1

Example Rewind 100

Purpose Moves the input file's pointer back by the specified

number of bytes

Parameters v1 - Number of bytes to move backward s (0 = start of

file)

Similar Cmds Bookmark, ReadFor

Rewind ignores the sign of v1, so 123 and -123 are treated the same way. If you wish to
move forward in the file, use the ReadFor command.

Rewind resets the $EndOfData condition, but this needs to be done before the script
ends or else you will move on to the FileDone step.

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

115

The Config Section

Overview

The Config (short for ―Configuration‖) section lets your script adjust how the
underlying Parse-O-Matic application looks and behaves. You can, for example, alter
the captions and hints on the optional input boxes.

Sample Script

By convention, the Config section appears at the beginning of your script. Here is a
sample script:

Config

 $CfgEnableOptionX = 'N'

 $CfgEnableOptionY = 'N'

 $CfgEnable OptionZ = 'Y'

 $CfgCaptionZ = '&CustNum'

 $CfgHintZ = 'Enter the 5 - digit customer number here'

End

If $OutData[1 5] <> $OptionZ Done

OutEnd $OutData

For the standard Parse-O-Matic user interface, this would disable the first two optional
input boxes, leaving only the third one (known generically as OptionZ). It would be
given the caption ―CustNum‖, with a hotkey of Alt-C (as indicated by the ampersand
preceding the C in '&CustNum').

Execution of the Config Section

The Config section is run when a script is loaded, and when you press F5. It is also run
if the application notices that the script has been changed.

The Config section is run again when the script is run, just before the TaskInit step.

Whenever the Config section is run, the entire script is checked for syntax errors.

Chapter

18

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

116

Commands Available in Config

Since the Config section deals with overall processing parameters, you should not use it
to initialize variables — that should be done in the TaskInit step.

In most cases, you will simply assign values to $Cfg variables. In addition to this,
though, you can use the following commands:

Begin, Else, End, If, Otherwise, Stop, NextStep

These let your Config section make certain decisions based on other factors (for
example: whether or not $TestMode = 'Y'). You cannot read input (because there is
none within the Config section), nor can you generate output.

The $Cfg Variables

The settings you make in the Config section are performed by assigning a value to one
of the special variables starting with the characters $Cfg. These are described below.

Optional Input Boxes

The standard Parse-O-Matic interface has three combo boxes known generically as
OptionX, OptionY and OptionZ.

You can alter the characteristics of these input boxes with the following $Cfg variables:

$CfgCaptionX, $CfgCaptionY and $CfgCaptionZ set the caption. You can include an
ampersand in the value to define a hotkey. For example:

 $CfgCaptionY = '&PhoneNum'

This will alter the caption for the OptionY input box to ―PhoneNum‖, with a hotkey
of Alt-P. You should test your script to ensure that the hotkey is not already used by
another control, and that the caption fits in the space provided.

$CfgEnableOptionX, $CfgEnableOptionY and $CfgEnableOptionZ turn on or off
the optional input boxes. If an input box is turned off, it will be ―greyed-out‖ and will
contain the string ―(Not used by this application)‖. For example:

 $CfgEnableOptionX = 'N'

 $CfgEnableOptionY = 'Y'

 $CfgEnableOptionZ = 'N'

This would turn off all optional input boxes except OptionY.

$CfgHintX, $CfgHintY and $CfgHintZ provide a ―hover hint‖. This is a short phrase
that appears when the user pauses over the input box with the mouse cursor.

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

117

File Names

The standard Parse-O-Matic interface has an input box for the Input File name and
one for the Output File name. Both of these have default values, which are set by the
following variables:

$CfgDefaultIFN Default input file name

$CfgDefaultOFN Default output file name

If you clear (i.e. leave empty) the Input File input box and then exit it (e.g. by pressing
Tab), the program fills in the input file name ThingsToDo.txt — one of the
sample files included in the Parse-O-Matic package.

You can change these defaults with $CfgDefaultIFN and $CfgDefaultOFN.

Note, however, that when a script is loaded these default names do not automatically
override the file names already in the input boxes. These $Cfg variables simply provide
the end user with a quick way to enter a commonly-used file name. If the default file
name is quite long (for example, if it is located in a sub-sub-sub-directory), this can save
the end user a lot of typing.

Two special file names are recognized by Parse-O-Matic: Clipboard and None.
Clipboard takes input from (or sends output to) the Windows text clipboard.
None means precisely what its name implies: if you take input from None, you'll get
no data (except the word ―None‖); if you send output to None, it disappears.

Filename may also be a URL, such ‗http://yourdomain/index.html‘ or
‗ftp://yourdomain/file.zip‘

File Formats

The format of the input and output files can be altered from the default setting (plain
text) with the following $Cfg variables:

$CfgInpFileType Input file format (examples: 'Text', 'Binary',

 'Delimited' , 'HTMLDe limited')

$CfgOutFileType Output file format

$CfgRecLen Record length for Binary files

$CfgDelimiter Record - ending delimiter character for Delimited files

These settings are described below.

I N P U T F I L E F O R M A T

If you do not specify a setting for $CfgInpFileType, it is generally assumed to be 'Text'
(unless the underlying Parse-O-Matic application has a different default).

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

118

The Text type can read standard Windows-style text files (i.e. each line ends with the
carriage return and linefeed characters: decimal #13#10; hex $0D$0A) or Unix-style
text files (where each line ends with the linefeed character).

Here are the supported values for $CfgInputFileType:

'Text' Windows - style or Unix - style text files

'TextLF' Unix - style text files on ly

'TextCR' Macintosh - style text files

'Delimited' Records terminated with a specific character

'Binary' Fixed - record - length file or RecLenZero script

'HTMLDelimited' HTML and/or XML Files

These file types are described below.

Text Files

The three text file formats (Text, TextLF and TextCR) try to deal gracefully with a
certain amount of variation. For example, TextCR will ignore any linefeed characters,
while TextLF will ignore any carriage return characters. If for some reason you wish to
retain these characters, you can use the Delimited file format (described below).

Delimited Files

If you set $CfgInpFileType to 'Delimited', you must also specify the delimiter character
that ends each record (with the possible exception of the last one). For example, you
could process Macintosh-style text files by using the following technique instead of the
TextCR format:

Config

 $CfgInpFileType = 'Delimited'

 $CfgDelimiter = $0D

End

This will read records that end with a carriage return character. The delimiter character
is not included in the result.

Multi-character delimiters are not supported, but in most cases you can simply parse
out the excess characters. For example, if you read a standard Windows-style text file as
a Delimited type, looking only for the linefeed ($0A), each record would have a
spurious carriage return ($0D) at the end which is easily removed with the TrimChar
command.

HTML/HTTPS/FTP for Input files

In HTMLDelimited mode, each record is delimited as an html or xml element.

$CfgInpFileType = 'HTMLDelimited'

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

119

This delimited feature allows you to more easily step through an HTML file.

HTMLDelimited iterates through the HTML file, but rather than defining a line as one
ending in CRLF, it would consider each HTML/XML element as a line. So if the page
contained:

<pre>this is

simple text that I have written.</pre>

Each record would be:

<pre>

this is simple

text that I have written.

</pre>

In the solution explorer, you may add Add Url as Input File, by right-mouse clicking
on the Input Files node. This also allows you to add website URLs as input files.
HTTP, HTTPS and FTP, amongst others, are support protocols.

Binary Files

If you set $CfgInpFileType to 'Binary', you must also specify a record length via the
$CfgRecLen variable.

A value of 0 (zero) denotes a RecLenZero script: your script will handle all reading with
commands such as Bookmark, ReadFor, ReadNext, ReadUntil and so on.

A positive integer value means that you are reading records of fixed length. In a fixed-
record-length file, all records (with the possible exception of the last one) are exactly as
many bytes as you specify in $CfgRecLen. For example:

Config

 $CfgInpFileType = 'Binary'

 $CfgRecLen = 80

End

This will read records that are 80 characters long. In principle you can read records that
are several billion characters long, though in practise this might create memory issues.

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

120

You should never set $CfgRecLen to a negative number as this currently has no
meaning to Parse-O-Matic.

O U T P U T F I L E F O R M A T

Since scripts can control output precisely (using the Output command), your output
file can adopt any format you wish. Thus, the $CfgOutFileType variable is used for
documentation purposes only. For example, it is displayed when you view a Help file
for a script.

For the sake of consistency the value of $CfgOutFileType is checked against a list of
permissible file types (Text, TextLF, Delimited and Binary). If you are outputting a
proprietary format (such as might be natively supported by a database or spreadsheet),
it is best to set $CfgOutFileType to 'Binary'.

Documentation

When you create a script, it is a good idea to also create a Help file to go with it.
Parse-O-Matic recognizes that a Help file is present when a file exists with the same
name as the script, but with the string ―Help - ‖ in front of the name. Thus, if you
created a script named:

FixData. pscr

then the corresponding Help file would be named:

Help - ScrFixData.txt

Once you've prepared the Help file, you can then set the following values in your
script's Config section:

Variable Name Explanation

$CfgCopyright Copyright notice (e.g. 'Copyright (C) 200 8 by WhizzCo')

$CfgVersion The version of the script (e.g. '1.00.00');

$CfgProgrammer The name of the primary programmer of the script

$Cfg Email Email address to contact the people who wrote the

script

$CfgLicense Terms of use ð you can append several strings with the

continuation convention (the >> characters) to create a

multi - line explanation.

When the Help file is displayed by the application, these items will be added to the end
(provided you assigned them a value).

P A R S E - O - M A T I C U S E R M A N U A L — T H E C O N F I G S E C T I O N

121

ODBC Support (Read/Write)

You can read and write from a database that you have access to, as long as it supports
simple ODBC connectivity.

Use the $CfgODBCConnection variable to set your connection.

Remember that you will need to match the connection you set in your script file, with
the connection you created with your ODBC Connection Manager found in your
Windows Administration folder, off of your Control Panel.

All connections to your database, via use of the SendToDB script command will use
the information you supplied in the $CfgODBCConnection variable.

P A R S E - O - M A T I C U S E R M A N U A L — C O M M A N D L I N E

P A R A M E T E R S

122

Command Prompt &

Unattended Operation

Command Line Parameters

Parse-O-Matic Business and Enterprise Editions support launching Parse-O-Matic
with command-line parameters.

This can be useful if you wish to more easily launch a solution for a user via a shortcut
or allowing for unattended operation.

To call Parse-O-Matic from the command line (e.g. in a batch file, a Windows shortcut,
or a task scheduler), the following format is used to specify the input and output files:

POM /I FN="Input.txt" /O FN="Output.txt"

You can also specify the contents of the three option boxes:

/ OPX="OptionX data goes here"

/ OPY="OptionY data goes here"

/ OPZ="OptionZ data goes here"

To specify a script file, use /SFN= as in this example:

/S FN="Sample01. pscr "

For a general overview of command line parameters, start up Parse-O-Matic as
follows:

POM /?

This displays a window which summarizes the command-line options, including the
parameters required to start parsing automatically (/RUN) and control program

Chapter

19

P A R S E - O - M A T I C U S E R M A N U A L — C O M M A N D L I N E

P A R A M E T E R S

123

termination (e.g. /CLS). The window is also displayed if your command line contains
an option that Parse-O-Matic does not recognize.

Full List of Command-Line Switches:

/SOL=<solution file name> Ignored by deployables

/CMD=<command line file>

/SFN=<Script File Name>

/IFN=<Input File Name>

/OFN=<Output File Name>

/SFN=<Support File Name>

/LFN=<L og File Name>

/HFN=<Help File Name>

/RUN=y|N Click Start button?

/DAP=y|N Display after processing?

/APP=y|N Append to output file?

/TST=y|N Test mode?

/CLS=y|N|a Close after processing?

/OPX=<value> Option X

/OPY=<value> Option Y

/OPZ=<value> Option Z

Format of a Command Line File

A command-line file allows the specification of parameters for every Project in a
Solution. The format is as follows:

; This is a comment

PROJECT=<Project Name>

Parameter String

Parameter String

Parameter String

PROJECT=<Project Name>

Parameter String

Parameter String

Parameter String

If a Project is not found in the command-line file, the values from the ppro file are
used. If a project is found, but one of the settings is missing, we use the setting from
the ppro file.

The /SOL parameter is ignored by deployables, even if it is found in a command-line
file.

Any command-line switch can also be used on the command line directly. If that is
done, it applies to the first Project only.

If the command-line contains /? then a Help window is displayed, and all other
switches are ignored.

P A R S E - O - M A T I C U S E R M A N U A L — C O M M A N D L I N E

P A R A M E T E R S

124

/CLS=A means ―Close after processing always, even if there was an error‖. In this
mode, pop-up error messages are suppressed.

/TST=Y sets the $TestMode special variable to 'Y'.

P A R S E - O - M A T I C U S E R M A N U A L — B A T C H F I L E S

125

Batch Files

Introduction

When calling Parse-O-Matic from a batch file, you must use the Windows START
command with the /WAIT option so that Parse-O-Matic can complete processing
before execution moves to the next line in the batch file.

If the batch file is running unattended, you should also feed Parse-O-Matic the
following parameters:

ðð

/R UN Run (i.e. start) processing immediately

/CLS Close the program after exec ution, even if there is an error

ðð

Thus, a batch file line that calls Parse-O-Matic would contain the items exemplified
below (line breaks and comments inserted for clarity only):

ððð

START The Windows START command

 /WAIT Await completion

 "C: \ Program Files \ Pyroto \ Parse - O- Matic \ POM.exe" Invo ke the program

 /IFN= "C: \ My Input \ Input file .dat" Input file or wildcard mask

 /O FN="C: \ My Output \ Output.txt" Output file

 /S OL=" C: \ Program Files \ Pyroto \ Parse - O- Matic \ Solutions \ MySolution.psolò

 /R UN="Y" Start processing

 /CLS ="Y" End afterwards

ððð

Note the use of quotes — these are mandatory if a parameter contains a space.

Please note that the above example is broken up onto different lines. Below is how it
would actually would look like if you opened your batch file in Notepad with
WordWrap set to True.

START /WAIT "C: \ Program Files \ Pyroto \ Parse - O- Matic \ POM.exe" /IFN="C: \ My

Input \ Inputfile.dat" /OFN="C: \ My Output \ Output.txt" /SOL="C: \ Program

Files \ Pyroto \ Parse - O- Matic \ Solutions \ MySolution.psol " /RUN=" Y" /CLS="Y"

The Error Reporting File

If a serious error occurs during processing, Parse-O-Matic creates a file named
POMPT- Error.txt in the same directory as the Solution file. The file is plain text
and contains information about the error. You can view the Error Reporting File using
the Support Files input box of the Parsing Parameters window; it will be listed in the
drop-down list.

If no error occurs, the file is not present after processing is complete.

P A R S E - O - M A T I C U S E R M A N U A L — B A T C H F I L E S

126

If you are using Parse-O-Matic in a batch file, you can check to see if processing
worked by using the IF EXIST test, as in this example:

@ECHO OFF

C:

CD " \ Program Files \ Pyroto \ Parse - O- Matic \ "

START /WAIT POM.exe /I FN="C: \ MyInput \ XYZ.TXT" /R UN="Y" /C LS="Y"

IF EXIST POMPT - Error.txt GOTO ERROR

GOTO OKAY

:ERROR

ECHO An error occurred!

GOTO DONE

:OKAY

ECHO Everything was fin e!

:DONE

ECHO Processing completed

Note that the /CA parameter suppresses pop-up error messages, so if you use it in
your batch file, it is up to your batch file to watch for the error file and then determine
what to do if an error (such as "File not found") occurs.

The Log File

In addition to the Error Reporting File, Parse-O-Matic also creates a log file (named
POMPT-Log.txt). Parse-O-Matic uses the log file to record the date and time when
processing started and ended. It also uses the log file to report anything that is slightly
unusual but not a serious problem.

You can view the Log File using the Support Files input box of the Parsing Parameters
window; it will be listed in the drop-down list.

P A R S E - O - M A T I C U S E R M A N U A L — U N A T T E N D E D O P E R A T I O N

127

Unattended Operation

If you require processing without human intervention, you can set up the Windows
Task Scheduler to run an appropriate batch file periodically.

The batch file can check to see if a particular input file (or a particular file wildcard)
exists in a particular folder. If so, the batch file would then invoke the parsing
application. After a successful run, the batch file would either move or rename the
input file. (Deleting the input file is not recommended, unless you have another copy
elsewhere.)

Here is an example of an appropriate batch file, which invokes Parse-O-Matic.

 @ECHO OFF

 IF NOT EXIST "C: \ MyInput \ *.dat" GOTO QUIT

 ECHO Start of processing

 C:

 CD " \ Program Files \ Pyroto \ Parse - O- Matic "

 START /WAIT POM.exe /I FN="C: \ MyInput \ file .dat"

/O FN="C: \ Output \ Output.txt" (line continues)

 (line continues) /S OL="ProcessDat a. psol " / OPX="" /OPY= "" / OPZ=""

/R UN="Y" /CLS="Y"

 IF EXIST POMPT - Error.txt GOTO ERROR

 CD " \ MyInput"

 RENAME "*.dat" "*.old"

 GOTO DONE

:ERROR

 ECHO An error occurred!

 PAUSE

 GOTO QUIT

:DONE

 ECHO Processing c ompleted

:QUIT

In order for this technique to work reliably, the batch file must be called with a greater
frequency than an input file is likely to appear. For example, if a new input file can
show up in as little as 20 minutes, it would be a good idea to call the batch file every 15
minutes. If you do not take this precaution, it is possible that an input file will show up
just as you finish parsing, which means it would get renamed and would not be
processed.

For this reason, it is not feasible to process input files that arrive every few seconds,
unless you have an exceptionally fast machine that does not experience unexpected
delays (such as automatic updates of the operating system, people accessing its hard
disk from the network, and so on).

P A R S E - O - M A T I C U S E R M A N U A L — U N A T T E N D E D O P E R A T I O N

128

If the batch file is running in a very unattended fashion (i.e. it handles countless arrivals
of new files, but people rarely check the machine), you should not include the PAUSE
command in the batch file, as this could cause the screen to fill up with open windows.

P A R S E - O - M A T I C U S E R M A N U A L — M U L T I - U S E R O P E R A T I O N

129

Multi-User Operation

Technical Issues

Parse-O-Matic is designed primarily for use in a single-user environment. Problems can
arise if multiple users attempt to use the same copy. Parse-O-Matic script applications
do not explicitly detect multi-user ―collisions‖.

When using Parse-O-Matic in a multi-user environment, each user should have their
own copy. Ideally, each copy should be located on the user's local machine.

P A R S E - O - M A T I C U S E R M A N U A L — L I C E N S E & L E G A L

I S S U E S

130

License & Legal Issues

Free and Basic Editions

Pyroto, Inc. licenses the Parse-O-Matic Free Edition and Parse-O-Matic Basic Edition
according to ―concurrent usage‖ rather than by machine or by person. Thus, if you
have a ―single concurrent user license‖ (sometimes referred to simply as a ―single user
license‖) you can install a copy of the product on your machine at work, and yet
another on your laptop that you use at home (depending on your own company‘s
internal policies, of course). You can use the same registration code on both copies.

You must be able to ensure that only one installed copy can be in use at any one time.
If this cannot be guaranteed, you must purchase additional licenses.

Business and Enterprise Editions

The licensing of Parse-O-Matic Business and Enterprise Editions are on a single-user
basis. That is to say that a separate license is required for each Parse-O-Matic that is
installed on a PC instance. For example, if you need to install Parse-O-Matic on six
PCs, or six Virtual Machines, then you need to purchase six licenses. Site licenses and
company-wide licenses are available. Please contact a sales representative for more
information, or our website at http://www.parseomatic.com

Scripts

Any scripts and accompanying files you write belong to you (or, in some cases, your
company). You do not need our permission to distribute them.

You cannot, however, distribute the supporting Parse-O-Matic application unless you
have purchased a distributor license from us. Parse-O-Matic Free Edition is
available in a freeware version, but some others (such as custom-designed parsing
applications) may not be distributed without prior written permission from Pyroto, Inc.

Deployables

Deployables created as part of Parse-O-Matic Enterprise Edition may only be
distributed internally to the license holder. If you need to deploy stand-alone

Chapter

20

http://www.parseomatic.com/

P A R S E - O - M A T I C U S E R M A N U A L — L I C E N S E & L E G A L

I S S U E S

131

Parse-O-Matic solutions to other companies or to customers, you must purchase
additional licenses from Pyroto, Inc.

Deployables can be distributed to multiple PC‘s within your organization. This can
greatly reduce the number of licenses required since a single Parse-O-Matic Enterprise
Edition can create stand-alone deployables for hundreds of your internal users.

P A R S E - O - M A T I C U S E R M A N U A L — S C R A M B L I N G

132

Security

Encryption

Overview

Scripts can be protected from alteration and execution by ―encrypting‖ them. In this
form they cannot be viewed from within any Parse-O-Matic application, unless the
proper password is entered.

Also, scripts that have been encrypted will only run on the installed instance of Parse-
O-Matic that encrypted them.

An encrypted script can be loaded into a text editor, but it will look like random
characters. Alteration of even one of the characters will typically result in a script that
either does not compile, or does not function correctly.

Limitations

Encrypting is not designed to protect confidential data. The scrambling algorithm is
sufficiently complex that most people will not be able to decode the file. However, one
person is 10,000 certainly has the skills to do this. Such wizards can usually solve this
kind of puzzle in under an hour.

Encrypting cannot prevent the duplication of the essential functions of a script. By
deliberately introducing errors, the end-user could gradually gain knowledge of the
contents of the script. This approach is, of course, quite labor-intensive; it would
probably be easier to rewrite the script from scratch.

Only scripts can be protected by encryption. Encrypting is not implemented for files
accessed via the LookupFile or SetFromFile commands.

Chapter

21

P A R S E - O - M A T I C U S E R M A N U A L — S C R A M B L I N G

133

Encrypting a Script

To scramble a script, right-mouse click the script in the Solution Explorer and select
the Encrypt option. You will be prompted for an encryption code, which must be at
least 6 characters long, and is case sensitive.

After encrypting, a copy of the original, unscrambled script can be found in a file with
the same root name, but with a .bak extension. Thus, if you scramble a script named
MyScript. pscr the backup copy will be available in the MyScript.bak file. If
the end-user is using your machine, it may be appropriate to delete the .bak file.

Turning off Encryption

To no longer have your script file encrypted, Right-Mouse Click the script in your
Solution Explorer. You will be prompted for the encryption code.

If the encryption code is correct, the script is no longer encrypted. If you type the
encryption code incorrectly, you can try again – up to 50 times. If, after 50 attempts,
you still have not entered the correct code, you must close down the program and start
it up again.

Security Analysis

A relatively unsophisticated keyboard-and-mouse macro routine could try out about
150 encryption codes per minute. Thus, if your encryption code is 6 characters long
and contains only lowercase letters, then the average time to obtain the scrambling
code can be calculated as follows:

26 ^ 6 / 150 / 525600 / 2 = 1.96 years

That is to say:

NumberOfPossibleCharacters ^ CharactersInCode / CodesPerMinute /
MinutesInAYear / 2

This assumes that the person knows the number of characters in the code and the
number of possible characters that it uses. But even with these advantages this is not a
feasible technique for obtaining the encryption code.

There are, however, more sophisticated approaches. A highly skilled computer expert
could probably obtain the scrambling code within an hour or so. Of course, somebody
with that kind of ability would be able to write their own script with much less effort!

P A R S E - O - M A T I C U S E R M A N U A L — S C R A M B L I N G

134

Index

$Cfg Variables, 116

AddDays, 93

AddWeekDays, 93

Again, 102

AlphaNumPatt, 64

Begin, 102

BinaryToText, 97

Bookmark, 112

Break, 104

Calc, 89

CalcBinary, 98

CalcReal, 90

Call, 104

Change, 47

ChangeCase, 48

Cols, 67

CompareCtrl, 65

Continue, 104

DateTimeFormat, 92

DayOfTheWeek, 94

Dec, 90

Done, 104

Else, 105

End, 105

Equals, 43

Exit, 105

FileDone, 109

FileInit, 109

If, 106

Inc, 91

Insert, 82

KeepChar, 48

Len, 44

LogDb, 100

LogMsg, 100

LogMsgLF, 100

Lookup, 85

LookupFile, 86

MassChange, 87

NextFile, 110

NextStep, 109

Now, 94

Numeric, 65

Odb, 51

Otherwise, 106

OutCSV, 52

OutEnd, 56

OutFile, 56

OutNull, 56

Output, 56

OutRuler, 57

Overlay, 82

Padded, 49

Parse, 83

ParseName, 44

Plural, 45

Procedure, 106

Que, 66

ReadEOF, 112

ReadFor, 112

ReadNext, 112

ReadUntil, 114

Regular Expressions, 62

Rewind, 114

Rounding, 91

ScanFollow, 87

ScanPosn, 67

SetFromFile, 45

ShowNote, 101

SplitCSV, 46

Stop, 107

TaskDone, 109

TaskInit, 109

TextToBinary, 98

TrimChar, 49

	Introduction
	What is Parse-O-Matic?
	Parse-O-Matic Versus Automatic Converters
	Why You Need Parse-O-Matic — An Example
	Parse-O-Matic to the Rescue!
	How It Works
	Advantages of Parse-O-Matic
	Sample Scripts
	How to Contact Us

	User Interface
	An Integrated Development Environment (IDE)
	Color-coded Development
	Intellisense
	Quick Links, Integrated Reference manuals and Community sections
	Integrated Reference Manual:
	Community Section:
	Solution Files, Projects and Script Files:
	Adding a Solution
	Adding a Project
	Adding a script
	Adding input and output files
	Multi-Script Execution

	Debugger
	Results Log
	Watch List
	Bookmark Window
	Visual Style Options
	IDE Options for tailoring the environment
	Deployables (Enterprise Edition only)
	Exception Handling
	Wildcards
	Stacking Wildcards

	Using the Windows Clipboard
	Using a URL as input

	Scripting
	What is a Script?
	Preparing Your Script
	File Naming Conventions
	Hierarchy

	Scripting Fundamentals
	Values, Literals and Variables
	Array Variables

	Special Variables
	Frequently-Used
	Input/Output
	User Interface
	Miscellaneous
	The $Ignore Variable
	The $Success Variable

	Special Syntax
	Continuation of Long Lines
	Embedding Quotes in Text Literals
	Untypeable Characters

	Free and Advanced Scripting
	Sample Scripts
	About Older Parse-O-Matic Applications
	Equals (Set Variable)
	Len
	ParseName
	Plural
	SetFromFile
	SplitCSV
	Change
	ChangeCase
	KeepChar
	Padded
	TrimChar

	Output Commands
	Odb
	OutCSV
	OutCSV Init
	Outputting a Field
	OutCSV Nulls
	OutCSV Done and Stop
	OutCSV Control
	Turning Fields On and Off
	Changing the Default Quoting State
	Switchable CSV/Columnar Reports
	OutCSV Examples

	OutEnd
	OutFile
	OutNull
	Output
	OutRuler

	Comparators
	Overview
	Types of Comparators
	Literal Comparators
	Examples
	Literal Comparisons and Sort Order

	Numerical Comparators
	Examples
	Numeric Comparisons and Sort Order

	Length Comparators
	Comparing Patterns
	Regular Expressions
	Basic Regular Expressions
	Using the Asterisk
	Advanced Regular Expressions

	Comparison Commands
	Overview
	AlphaNumPatt
	CompareCtrl
	Numeric
	Que

	Positional Commands
	Cols
	FindPosn
	ScanPosn
	The Scanlist
	Accommodating Variation
	Handling Prefixes and Suffixes

	Control Settings
	Last, First and Any
	The “Best Match” Principle

	Finding Patterns with ScanPosn

	Decapsulators
	Overview
	Quick Reference
	A Simple Example
	Why Decapsulators are Necessary
	Introduction to Occurrence Numbers
	Sample Application

	Occurrence Number Syntax
	Finding the First and Last Occurrence
	Finding the Next Occurrence

	Positional Decapsulators
	Negative Positional Decapsulators
	Using Positional Decapsulators Safely

	The Plain Decapsulator
	Unsuccessful Searches
	The Control Setting
	The Null Decapsulator
	Why Null Decapsulators Work Differently

	Overlapping Decapsulators
	Parsing Empty Fields

	Decapsulator Commands
	Overview
	Insert
	Overlay
	Parse
	The “Cut” Control Setting
	The “Relaxed” Control Setting

	Lookup and Database Commands
	Overview
	Lookup
	LookupFile
	MassChange
	ScanFollow
	Advanced Database Connectivity
	SendToDB

	Calculation Commands
	Calc
	CalcReal
	Dec
	Inc
	Rounding
	Overview
	DateTimeFormat
	Date and Time Format Codes
	Examples

	AddDays
	AddWeekDays
	DayOfTheWeek
	Now
	Overview
	Parse-O-Matic Conversion Codes
	BinaryToText
	CalcBinary
	TextToBinary

	Reporting Commands
	Overview
	LogDb
	LogMsg
	LogMsgLF
	ShowNote
	PlaySound

	Flow Control Commands
	Overview
	Again
	Begin
	Break
	Call
	Continue
	Done
	Else
	End
	Exit

	Procedure AdjustPhoneNumber
	If
	Otherwise
	Procedure
	Stop

	Step Control
	Overview
	Using Step Control
	FileInit and FileDone
	TaskInit and TaskDone
	NextStep
	NextFile

	Manual Read Commands
	Overview
	RecLenZero Scripts
	Using Manual Read for Standard Input File Types

	Bookmark
	ReadEOF
	ReadFor
	ReadNext
	ReadUntil
	Rewind

	The Config Section
	Overview
	Sample Script
	Execution of the Config Section
	Commands Available in Config
	The $Cfg Variables
	Optional Input Boxes
	File Names
	File Formats
	Input File Format
	Text Files
	Delimited Files

	HTML/HTTPS/FTP for Input files
	Binary Files
	Output File Format
	Documentation
	ODBC Support (Read/Write)

	Command Line Parameters
	Format of a Command Line File

	Batch Files
	Introduction
	The Error Reporting File
	The Log File

	Unattended Operation
	Multi-User Operation
	Technical Issues

	License & Legal Issues
	Free and Basic Editions
	Business and Enterprise Editions
	Scripts
	Deployables

	Security
	Encryption
	Overview
	Limitations

	Encrypting a Script
	Turning off Encryption
	Security Analysis

	Index

