PYROTO, INC.

Parse-O-Matic™ Software Editions
Version 5.x BETA

Parse-O-Matic
Users Guide

PARSE-O-MATIC SOFTWARE EDITIONS

Parse-O-Matic™ Users Guide
Revision 6.1

Copyright © 1986-2010 Pyroto, Inc.
17 Glendale Road
Sturbridge, MA 01518
Phone 508.644.8344

Features described may or may not be active in the version of Parse-O-Matic you are using. Some features may require the
purchase of additional licenses, at an additional cost. We endeavor to accurately describe each feature and command, however
mistakes do happen. If you spot one, please let us know so we can update the documentation.

Table of Contents

INTrOUCTION . .ceece e e e 9
What is Parse-O-MatiC?........cccovvviiiiiiiie e 9
Parse-O-Matic Versus Automatic Converterscccccvvvvvvieneeennn. 9
Why You Need Parse-O-Matic 8 An Example...........ccccccvvvevnnnnnnns 9
Parse-O-Matic to the ReSCUE!.........ccoeeeeiiiiiiiiiii e, 10
HOW IEWOTKS.. ..o 10
Advantages of Parse-O-MatiC...............uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiininnns 11
SAMPIE SCHPLS ...eeiiiii e e e e e eeanns 11
HOW t0 CONACT US ...ovviiiiiiciee et 12

USer INtEITACE.coei e 13
An Integrated Development Environment (IDE)uuvveeinnnes 13
Color-coded Developmentccooeeeiiiiiiiiiiiiee e 15
INEEHISENSE .. 15
Quick Links, Integrated Reference manuals and Community
SECHIONS ... it e e e e e e e aaana 16
Integrated Reference Manual:.................ooooovviiiiiiii e, 17
CoMMUNILY SECHON: ..o 17
Solution Files, Projects and Script FileS:cccoovviiiiiiiiiiieeeeeeens 18

Yo [[o Jr= S0 (1] 1o o PP PPPPPPNt 19
AdAING @ PrOJECT......eiiiiiiiie et 19
o [[o = TE=Td] | AP PPPPPPNt 19
Adding input and OULPUL fil€Sevviiiiiiiiiiiiiieieeeeeieeeeeeeeeeee e 20
MUIti-SCriPt EXECULIONeveiiiiiiiii e 20
=T o]0 T [=] SR 21
RESUILS LOQ . .ciiiiiiiiiiii e e 23
L AT = Lol] 24
BOOKMArk WINAOWcooviiiiiiiieie e 24
Visual Style OPtioNS........oociiiiiiieeee e 25
IDE Options for tailoring the environmentccccevvviiiiiiiennnnns 25
Deployables (Enterprise Edition only)ccccoeeeviiiiiiiiiiiiiineeeeennn, 28

Exception HanNdliNgcooovviiiiiiiii e 29

LYV o (o= 1o L3RR 29

Stacking WildCArdsScocuviiiiiiiiiie e 29

Using the Windows Clipboardeuveiiimiiiiiiiiiiiiiiiiiiiiiiieens 30

UsSIiNg @ URL @S INPULiiiiiiiiieecie e 30
Yo 1] o1 T PSP 31
What IS @ SCHPL? ..eeeiiiiiiiiiiieeeeeeeeeeeeeeee e 31
Preparing YOUr SCIPL.........uuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeneees 32

File Naming CONVENTIONS.........cuuiiiiiiiiiiiieiee et e e e et e e e e e s e 32

HIETAICNY ...t 32

Scripting Fundamentals...........cccoooviiiiiiiiiici e 35
Values, Literals and Variables.........ccoooviiiiiiiiiii e 35

Array Variablesuuuiiiiiiiiiiiieieiiiiiiieieeeeee e ee e e e erererererarenaraae 35

Special Variablescoooiiiiiiii e 36
Frequently-USEd ... 36

1] o]0 1 7@ 11 o 11 | PP PPPPPPNt 37

USEI INTEITACE ...t 37

MiISCEIIANEOUS ... s 38

The $IgNore Variableccvviiiieiic e 38

The $SUCCESS Variableccvviiiecci e 38

Special SYNTaXcoooiiiiiiii 39
Continuation of LONg LINESccoooiiiiiii 39

Embedding Quotes in Text LiteralS........cccoeeeeoeiiiiiiiiiiiieieeeeeeecc 40

Untypeable CharacCtersocueeii i 40

Free and Advanced SCripting.......cccooeeeeeriiiiiiiiiie e 41
SAMPIE SCIPLS ...eveiiie e e e e e eaanns 41
About Older Parse-O-Matic Applications................evveeeiiiiiiiiennnnnns 42

Data Assignment Commands..........cc.ovveveiineeriiiieeeeiineeeeiineeenns 43
Equals (Set Variable)coooirmiiiiiiiiieeee e 43

o PP 44
ParseNaME ... 44

PIUPAL. ... 45
SEtFrOMFIlE ..oeeee 45
SPIECSV e 46

Data Alteration Commandscccoeeeviiiiiiieiiieeiee e, 47
ChaNGE .. a7
ChanNgECaSE ..o 48
[STT o1 = 1 48
Padded.........cooiieee 49

[o | o RSP 51
OULCSV e e 52
OUECSV TN .t e e e e et eeeeaeeeas 52
Outputting @ Field..........uvviieeii e 53
OULCSV NUIIS ..t e e e e e e e 53
OULCSYV DONE AN StOP....eeveieiiiiiieiiiiie ettt 53
OULCSY CONIOL ... 53
Turning Fields On and Off ... 54
Changing the Default QUOtING Stateccceeiiiiiieiiiiee e, 54
Switchable CSV/Columnar Reports.........cccccoeeeeeeei 55
OULCSY EXAMPIES ...ttt 55

(@ 11 1= o o SRR 56
OULFIIE 56
[11 1 [SRR 56
OULPUL ... e e e e e e e e e eeeees 56
OULRUIET ... 57
(O70] 0010 T= 1= 1 (0] £ T PPRPRN 58
OVEIVIEW ... 58
Types Of COMPATratOrS.........covviviiiiiiiiiiiiiiiiiieieeeeeeeeee e 58
Literal COmMPAratorS........ccceeeiiiieiiiiei e 59
EXQMPIES ... 59

Literal Comparisons and SOrt Order...........couueiieiiieieiniiiee e 59
Numerical ComPAaratorsuuuiiiiieeeeieieecee e 60
EXQMPIES ... 60
Numeric Comparisons and Sort Ordercceeeeiieeeeiiiieee e 60
Length CompParatorsccooveviiiiiiiii e 61
Comparing Patternsoooviiiiiiiie e 61
Regular EXPreSSIONSuuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiaiensinnnenneeseannennnens 62
Basic Regular EXPreSSIONS 62

USING the ASEEIISKee s 62
Advanced Regular EXPreSSiONS.ocuveieiiiiieeniiieeeeiiieeeesiieeessiieee e 63
Comparison COMMANGS.........ooeviiiuiiiieeiiii et 64
OVEBIVIBW ...ttt ettt e e e e e e e et e e e e e e e e eeaenes 64
AIphaNUMPALt........cooi e, 64
CoMPATECTHI...eeeeeeeeee e 65
N[0 LT oS 65
L L PR 66

Positional CommaNndsSceoeninieeie e 67

FINAPOSN ... e e 67
SCANPOSN....ce e 67
THe SCANIST ... 68
Accommodating Variationcueeeiiiiieiiiiiiee e 69

CONIOL SELLNGS ..eeeeiiiiiieiiiei e 70

Finding Patterns with SCanPoSNccccccvee i 72
DeCapPSUIAtOrScccviciiii e 73
OVEIVIEW ...ttt e e e e e e e e e e e eees 73
QUICK REFEIENCE ... 73
A SIMPle EXaMPIE.....oveiiii e 74
Why Decapsulators are NECESSArYuuuuuueveiviimmiiiiiiiiiiiininnanns 74
Introduction to Occurrence NUMberscooevviiiiiii e, 74
Sample Application ... 75
Occurrence NUMDEr SYNtaX..........ccvvvviiiiiiiiiiiiiiieeeeeeeeeee 75
Finding the First and Last OCCUIMENCEcoccuveeeiiiiiiieiniiiee e 76

Finding the NeXt OCCUITENCEuuu s 76
Positional DecapSUulatorsS..............uuuuuiiiiiiiiiiiiiiiiiiieeeees 77
Negative Positional DecapsSulatorscoovveiieiiieiie e 77

Using Positional Decapsulators Safely........cccoooeeiiiiiiiiiiiiiiieccccccccccccn 77

The Plain Decapsulator...............cuvvviiiiiiiiiiiiiiiiiiieeeeeeeeeeee 78
Unsuccessful Searches...........ooovioiiiiiiiic e 78
The Control SEttiNgGcovvveiiiii e 78
The NUull DeCapSUIator...........cccvivviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee 79
Why Null Decapsulators Work Differently..........cccccoviiiieiiniiiiennne 80
Overlapping Decapsulators...........ccovvvveiviiiiiee e, 80
Parsing EMpty FIeldsuuuiiiiiiiiiiiiiiiiiiiiiiieee 81
Decapsulator Commands............ccoeevvvieeiiiiieeeiie e 82
OVEIVIEW ...ttt e e e e e e e e e e e e eeees 82
1 EST =] o APPSR 82
OVETIAYo 82
= TS > 83
The ACut o Cont.r.ol..Set.t.i.ng. ... 83

The ARel axedo .Co.nt.r.ol...Se.t.t.i.ng.....383
Lookup and Database Commands...............ccceeeeiiiiieeiiiineen, 85
OVEIVIEW ...ttt e e e e e e e e e e e e eeens 85
[0 T0] (U | o ISP 85
[0 T0] (U o i = P 86

MaSSCRANGEuuiiiiiiiiiiiiiiiiii e 87

SCANFOHOW .o e, 87

Advanced Database CONNECHIVILYuuuuumruimiimiiiiiiiiiiiiiinniiennns 88
SENATODB ...oeii e 88
Calculation CommandsScccccveiiiiiiiiiieeeeeeeee e 89
G i 89
CalCREAI .. .cevieee e 90

D o 90
o 91
ROUNGING. ..ttt 91

Date and Time Commandscooeeeviiiiiiieiiieeeieeee e, 92
OVEIVIBW ...ttt e e e e e e e e e e e e et e e e st e e eraneeeaaeees 92
DateTimeFOrMaLt.........cooeiiiiiei e e 92

Date and Time FOormat COUEScccciiiiiiiiic e 92

EXAMPIES .ot 93

AAADAYS ...eviiiiie e ——————————— 93
AdAWEEKDAYSccevvviiiiie et e e 93
DayOFfTREWEEKuuiiiiiiiiiiiiiiiiiiiiiii e 94

L0 94
Binary Conversion Commands..........ccoeeveviieviiiieeiineeeeineeens 95
OVEIVIEW ...ttt ettt e e e et e e e et e e e e aaa e e e eaba e eeens 95
Parse-O-Matic Conversion Codesccooevvvviiieeieiiiiieeeeeiiee e, 96

2T F= UV Wl =) SRR 97
CalCBINAIY.....cooeeeece e 98
TeXITOBINAIY ...cciiiiiiiiiiiiiiiieiee e 98
Reporting Commandsovivviiiiiiiiieccee e 100
(@ 1YY 1P 100
LOGDD .. ———————————— 100
100]V = o PP 100
LOGMSOLE ... 100
SNOWNOLE ...t eaaaas 101
PlaYSOUNG.... .. 101

Flow Control Commands..........cccceeveviiieiiiiieiiieeeeeeeeeee e, 102
(@)Y= V1Y 102

AGAIN ... 102

7T | o N 102

T (=T | TR 104

(O | PO 104
(O70] 0] 1] 010 =S 104

= o 105

E X e 105

| TP UPPPTRRUPPIN 106
OtNEIWISE ... e 106
PrOCEAUIE .. .cvecee e 106

) (0] o J PPN 107

Y (=T o 0] 311 {0] P 108
OVEIVIBW ...ttt e e e et e e e e e e aa e e e aa e eaaans 108

USING Step CONLIOl......uuiiiiiiiiiiiiiiiiiiii e 108
Filelnit and FIleDONEouiiieiiiieeeeecee e 109
Taskinit and TaskDONEcovoviiiiiiiiieeeeeeee e 109
NSy Y (=T o PP PP PPRRP 109
NEXEFIIE ..cveeeeeeeee e e e e 110
Manual Read Commands...........cccoeevviiiiiiiiiiieeieeeeeee e, 111
OVEIVIBW ...ttt et e e e e e e e a e e e e e raa s 111
RECLENZEIO SCIIPLS ..eeiiiiiiiiieiiiiee ettt 111

Using Manual Read for Standard Input File TypesS.......ccccoeeeeeiiiiiiiiinnne 111

BOOKMAIKciiiiieieeeeee e eeaaas 112
REAAEOFo 112
REAAFONeeeiei e e eeaaas 112
REAANEXL ... et eeeaaas 112
ReAAUNLILceeiee e e 114
REWINA ..o eeeaaas 114

The Config SECHON......cccuviiiieie e 115
OVEBIVIBW ...ttt ettt e e e e e e e e e e eraa s 115
SaAMPIE SCIPL....coiiiiei 115
Execution of the Config Sectioncooovviiiiiiiiiiiiiiieeee, 115
Commands Available in Config.........ccovvviiiiiiii e, 116

The $Cfg Variables ... 116
Optional INPUEt BOXEScccoeeiiiieeee 116

FIle NAMES ... s 117

FilE FOIMALS ... s 117
HTML/HTTPS/FTP for Input filesccooeeviiiiiiiice e, 118
DOCUMENTALION ... s 120

ODBC Support (Read/WIILE)cceviueieeiiiiie et 121

Command Prompt & Unattended Operation...............cc.uue.... 122
Command Line Parameters........ccooeeveeeviiiiiieeiieeeieeeeeeeaenn, 122

Format of a Command Line File........oeveeieiie e 123

BAICO FIlES ... e e, 125

L0 [0 T4 1o] o I 125

The Error Reporting File..........cooovviiiiiiieee 125

The LOG Fle oo 126
Unattended Operation..........ccooveueiiiviiiiieeeiii e 127
Multi-User Operationcoeeveuiieiiiiineieis e 129
TeChNICal ISSUESccovviiiiiiiiiiiiiiieeeeeeee e 129
License & Legal ISSUEScvvveiviiiiiiiecee e 130
Free and BasiC EdItiONSccveiiiiiiieiiie e 130

Business and Enterprise Editionscccceiiiiiiiiiiicie e 130

1ol 1] o] £ TP PP PUPPPP 130

DepPloyablesoooeuiiiiieeeee e 130
Yot U]] S 132
ENCIYPLION ... 132
OVEIVIEW ... 132

[T 1 2= 4o 13 PSPPI 132

ENCrypting @ SCriPt......oii e 133
Turning off ENCryptioncooooeiriiiiii e, 133
Security ANAIYSIS. ... 133

PARSE-O-MATIC USER MANUAL — INTRODUCTION

Chapter

Introduction

What is Parse-O-Matic?
Parse-O-Matic is data processing technology from Pyroto, Inc. It is used by programs
such as the Parse-O-Matic Free Edition, Parse-O-Matic Basic Edition,
Parse-O-Matic Business Edition and Parse-O-Matic Enterprise Edition— our
programmable file-parsers.

Parse-O-Matic (all editions) is a programmable file-parser. It can help you out in
countless ways. If you have a file you want to edit, manipulate, or change around, this
may be just the tool you need. Parse-O-Matic can also speed up or automate long,
repetitive editing tasks, including clipboard manipulation.

Parse-O-Matic Versus Automatic Converters

Parse-O-Matic is not an “automatic file converter”. It will not, for example, convert
WordPerfect files to MS-Word format, or convert Lotus 1-2-3 Spreadsheets directhy
Excel files — although it can read reports from one program and convert them to
another format (such as comma-delimited), which can be imported by the other

program.

One advantage of this method (as opposed to automatic file conversion) is that you
can create an “intelligent” importing procedure, which can make decisions and modify
data. You could, for example, eliminate certain types of records, tidy up names, convert
case, unify fields, perform calculations, and so on.

Why You Need Parse-O-Matic — An Example
There are plenty of programs out there that have valuable data locked away inside
them. How do you get that data OUbf one program and into another one?

Some programs provide a feature which “exports” a file into some kind of generic
format. One of the most popular of these formats is known as “comma-delimited”
(also known as CSV, which stands for “Comma-Separated Value”), which is a text file
in which each data field is separated by a comma. Character strings — which might
themselves contain commas — are surrounded by double quotes. So a few lines from a

PARSE-O-MATIC USER MANUAL — INTRODUCTION

comma-delimited file might look something like this (an export from a hypothetical
database of people who owe your company money):

"JONES","FRED","1234 GREEN AVENUE", "KANSAS CITY","MQ",293.64
"SMITH","JOHN","2343 OAK STREET","NEW YORK","NY",22.50
"WILLIAMS ""JOSEPH","23 GARDEN CRESCENT","TORONTO","ON",16.99

Unfortunately, not all programs export or import data in this format. Even more
frustrating is a program that exports data in a format that is almosthat you need!

If that's the case, you might decide to spend a few hours in a text editor, modifying the
export file so that the other program can understand it. Or you might write a program
to do the editing for you. Both solutions are time-consuming.

An even more challenging problem arises when a program which has no export
capability does have the ability to "print" repotts to a file. You can write a program to
read these files and convert them to something you can use, but this can be a lotof
work!

Parse-O-Matic to the Rescue!

Parse-O-Matic reads a file, interprets the data, and outputs the result to another file. It
can help you “boil down” data to its essential information. You can also use it to
convert Nearlyompatible import files, or generate printable reports.

How It Works

To process data with Parse-O-Matic, you need three things:

1. The Parsé>-Matic program
2. A ParseO-Matic script file to tell Pars®-Matic what to do
3. The input file

10

PARSE-O-MATIC USER MANUAL — INTRODUCTION

The input file might be a report or data file from another program, or text captured
from a communications session. Parse-O-Matic can handle many types of input. We've
provided several sample input files. For example, the file ThingsToDo.txt is a
simple “To Do” list. If you want to modify such a file in various ways, Parse-O-Matic
can help!

Parse-O-Matic works by running the entire script every time a new record is loaded
from the input file. You simply need to tell Parse-O-Matic the name of the input,
output and script files and click a button. (You can also automate the process by calling
Parse-O-Matic from the task scheduler, a batch file, or another program.)

Advantages of Parse-O-Matic

Parse-O-Matic has evolved over more than two decades to accomplish a single task:
extracting and manipulating data contained in “flat” files. Its scripts are written with a
loopless, top-to-bottom rationale so that you do not have to spend time writing code
to load each record from the input file — Parse-O-Matic handles that for you.

In addition, you do not have to declare variables, and the extraction commands (such
as Parse and ScanPosn) are extremely powerful — designed specifically for the
challenges that arise when trying to extract data from files.

Some of our clients have told us that they save hundreds of dollars in labor costs every
time they write a Parse-O-Matic script instead of using a traditional programming

language.

Once you have mastered Parse-O-Matic Scripting, you may find that you are regularly
using it for tasks that would previously have been too time-consuming. Just about
everyone has files that they would like to filter or reformat. Without the right tool these
operations are sometimes too difficult to even attempt. With Parse-O-Matic, though,
they can often be done in just a few minutes.

Sample Scripts

Parse-O-Matic comes with several demonstration scripts. To try one out, start up
Parse-O-Matic. Then, select File, Open, Solution. You'll find the solutions in the
Samples subdirectory, which was created when you initially installed the application.

Select one of the Solutions (such as ScriptSample01), then click on the Run
button in the toolbar.

Once processing is complete, you will see the resulting output. You can also double-
click the script in the Solution Explorer window to study the script that you just ran.

In addition to the sample scripts included with Parse-O-Matic, you can find additional
sample scripts in the Pyroto, Inc. Knowledge Base, available at
www.Parse-O-Matic.com.

11

PARSE-O-MATIC USER MANUAL — INTRODUCTION

How to Contact Us
If you have any questions about Parse-O-Matic, you can contact us in the following

ways:

Voice Line: +1-508-644-8344
Email: support@parseomatic.com
Web Site: www.Parse-O-Matic.com

You can also write to us at the following address:

Pyroto, Inc., 17 Glendale Road, Sturbridge, MA, U.S.A. 01518

12

file:///C:/Users/jludwick/Desktop/QuickDesktop/www.Parse%1eO%1eMatic.com

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Chapter

User Interface

An Integrated Development Environment (IDE)
When you start Parse-O-Matic, the integrated IDE opens up a main window, a side
window and bottom window.

The main window shows your most recent projects. It also shows you the options to
create new projects and run existing projects.

The side window allows you to open the Solutions Explorer for a particular solution.
You can view the details of the solution such as input and output file names, script file
names etc. For each of the solution’s objects, the properties window shows details on
the solution and project properties along with the Bookmark, Breakpoint and Watch
DS details. These will be explained in the respective sections of bookmark window and
watch list respectively.

The bottom window has four tabs each of these showing the results of the solution,

the debug console window showing errors if any, the bookmark window and the watch
list.

13

PARSE-O-MATIC USER MANUAL — USER

Snapshot of the new IDE

¥ Parse-D8dadic Fres Editian

Fle Miew Debug Oploss Windows WisaalShiss Help
e T T IR =

ARl one Feleance:

Parse-0-Matic™

Tum 'What Yau Eaee Ino What Yoo Want

Dusck Licks | Comeuriy

INTERFACE

= ¥ | “FPropertics

5 4

PROTO INC.

W, parsd-g-mabc com

Pl 7 i it [Cibeciinn]
Progeciz |Colecinn]
2 WiakchD '

Rimcent 5 olibors Sl Salution Explorer
SampleFroiects puol Fun Open -3
MamaSohdion gl Fun Open o GamplsPropcls
Openc Soluton.. A Solor..
Copala Solitor,

% Farvt Fossi it |22 Corvske Lot |20 e Whinebos | R WAL D Lis)

An IDE provides the following advantages:

1. User Friendly GUI — the user interface portrays a professional theme and allows

you to change the look and feel of the IDE. It is also quite easy to understand for
first-time users of Parse-O-Matic, especially those who are familiar with other
development environments.

. Support of multiple, parallel user operations — the multi-window view of the IDE
allows you to run a solution on the one hand, view the properties of script files on
the other and also see the console log for any debugging exceptions. You can
create multiple projects and also set their order of execution.

. Color-coded development — you can handle scripts in the same way that code is
handled in many commercial IDEs. The Parse-O-Matic IDE provides color-coded
distinction in the vatious parts of the script code to differentiate between
comments, actual code, code blocks, etc.

. Deployables: This is a feature available in the Enterprise edition of Parse-O-Matic.
This is similar to an .exe file, which can be run by you without making use of the
Integrated IDE of the Parse-O-Matic program. This is explained in further sections
of this manual.

14

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Color-coded Development

Color coded development is a feature that allows you to easily identify parts of the
code depending on whether the code has comments, looping statements or variables.
With color-coded development:

1. The application highlights the code in such a way that it is easy for you to identify
beginning and ending of a code block, defining variables and reserved words and
distinguishing between the two types and differentiating the files reference in the
script from the actual code. This makes coding the script easier.

2. Another use of color-coded development is in easier maintenance of your code.

3. Color-coding also helps to prevent errors while writing the script. An example
might be that as a developer you might use a reserved word as a variable in the
script code but because reserved words are colored differently from user-defined
variables.

‘Welcome Felrercs SrrptSamplel)], pscr & ciplS amplell2 pecr -
Comments
Configuration
Variables
looping
statement
¥ \
with che inpuc file | §CfghefaulcIFN Start and End
¢ If all 2 well, we'll cutpuc o nice header of Code blocks

n ' fAcrualIFH /

-+ Trnare nnbl Gine
It >
SerplS g pacs Usitoda | Livw F3LCokmst BETS M

(Find Remikts | P9 Cormola Lon | L Bockmark Wirdow | T Wakch Lt

Snapshot of a script

Intellisense
While editing a script file, you can press CTRL-Spacebar after typing the first few
letters of a script command, and you will be shown a list of the parameters and a mini-
help guide to that command.
The features of color-coding in the Parse-O-Matic IDE are:

e Configuration variables always start with $ sign and are marked black

e Code comments always start with ‘;” and are marked green

e Looping statements such as if are marked violet in color

15

PARSE-O-MATIC USER MANUAL — USER INTERFACE

e User variables and printing statements are marked in blue
e Reserved words are also marked in violet color.
e Arrays are marked in maroon color

e Each script has a configuration section with Config and End statements and a
Tasklnit and End statement block containing script code

e Number assignments are marked in light golden color

You can expand and collapse code blocks such as the configuration code block and
TaskInit code block.

Quick Links, Integrated Reference manuals and Community sections
These features are visible to you on opening the Parse-O-Matic application.

Welcome flelsercs

Parse-0-Matic” PYROTO INC.

Tare Woa! You Howe bets What Sou Wt W R0 NI O

Dok Loy Cwwra,

Parse-0) Mot | arum Monter [POM FM] J
Usdaled [Subyscs

2OB05 15109745 Phaed 1copt Sr web [0 wgumet aw 1
2080421 12399 Utind Searfoow wih the coml setdo Nkt Caie' ‘
e O RERIER 1] HawDa 1 ? I
200040 ey SUppresing rensa)s ‘
2084311 1905 Parte s peligle Mt

SN0 142004 Corrnd Lna Proceiarg

200001-291%2418 Lre Nuvtest
L] = - e ——
Latost WikiHesn

Usculat Subect | Byt l
;J(*';-OSOS |e23 F;-:'ON* WhiCanert evarts My 5 2005 - PanseO Ml verien 5 ertets Beta | poule imndend & patcgeing. pleams mnd & note 0 beteZgpctocon Ory unil
FUG10 (%52 Vet ok ety Camgtud [. ‘
BT NWE Py I QEreds SVa. W] DA Gepasaing the shipants of & sonantic VIOARe |5ach 26 3 33 e Uved Dy 3 CONOul, o 4 tenierce n A o
0050218 (50241 FPaneQNec Pacte O Mesc & & sobwue prode! | e & comgubie prigeav| cmated by Prote, Ire. which can be uied o comeed data likx e o le
SN2 Cow As cow w a borane srnant rugvered thatl goes Y00 ‘
2050308 1RAE1E Cwv LSV stands (o "Torwns Sepansiad Ve I o & vandyd veorn of echagng dats. ard wively of ipesaciheet and Gyabaies o i
2050218178215 Tab Man Page Thae i the drunson page I the nan pege of the Pard Nale viki In moal cams e page will be eclied onk by e wvgpicpear of Py
e - P ——

In the Quick Links section, you can see the following:
View Recent Solution Files — you can view the list of your recent solution files
Create a New Solution File — you can click on this link to create a new solution file

Run a Solution File — you can run a solution file by clicking on this link

16

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Open a recent Solution File — you can open the most recently used solution files

More information on solution files and other components is explained in the following
sections.

Integrated Reference Manual:

As a user, you can view the reference manuals and tutorials for help on various features
of Parse-O-Matic. These reference manuals provide a quick reference guide to
scripting, a quick start guide for first time users of Parse-O-Matic and a full-fledged

user manual.

D BHdp FEDS &

’7 Weloove Heletenon SoaptSaplaln pacs SoptSanpiedl pro

Overview: Parse-O-Matic Power Tool

Table of Contents

7y section title below to Jmmp directly to that section

wiev & sumsary of receat chaages to the program, oliick bere

Quick Reference — Scripting

Command Hesw * Comman: Format (Default valoss sre shows in bold texs)

AddDaye a perticular date

varday nomber

Tir AT bR Frem Awrw

AR n N

B rovd Rmads

Community Section:
In this section, you can view forum discussions and wiki items, once you are connected

to the Internet. You can see the latest forum posts and wiki items in order of their
modified date.

This provides you with additional help and understanding of issues encountered during
the run of Parse-O-Matic. The data is taken from live discussions on the forum and on
Wiki, so this data is always up-to-date.

17

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Solution Files, Projects and Script Files:
A solution comprises of the following:

A project file — This forms the class files of the input, output, support and
other files. This file has an extension of .ppro.

An input and an output file — these files comprise of content, which has to be
parsed and content obtained after parsing respectively.

A script file — this specifies the actions to be performed while parsing the input
file. It is usually written using the scripting features available and explained in
the previous chapters. This file has an extension of .pscr.

Support Files, Log files and help files — support files are used in addition to the
input files, to run a script and view the parse results. Log files would save the
log results after a solution has been run. Help files can be added to the solution
for understanding and information on the script file.

The solution file is saved with the extension of .psol and is run if parsing has to
be done on a given set of input files.

The Solution Explorer on the right hand side window shows these objects, when a
solution is created or selected:

[P Sy D L e

W o

3843

18

PARSE-O-MATIC USER MANUAL — USER INTERFACE

In addition to these files, the solution explorer also shows ‘Processing Parameters’.
These are settings that you can specify just prior to running solutions.

If you check “Display after processing” under Output file settings, then you can view
the results of the parsing in the output file. If you select “append to existing file”, then
the application appends the result of the output to the input file.

The PPS or Processing Parameter Screen is only showed once you start/run/execute a
project. When you check the Display PPS checkbox, Parse-O-Matic shows a separate
window after the processing of script and input file is done. You can also specify what
can be changed through the PPS as is seen from the diagram, namely Script File Name,
Input File Name, Output File Name, Help File Name etc.

Adding a Solution

When you want to create a solution file, you should select File, click on New and select
Solution. Parse-O-Matic asks you to input the solution’s name, and by default the
solutions are saved under the Solutions Folder. Once you save the details of the new
solution, the application prompts you to add more components to the solution such as
a new project, scripts etc.

Adding a Project

™ 2dd Froject ta Mew Solution? X

“'ou have created a Solution named:
SolutionExample

Do you want b0 add a Project to thiz Solution?

ez, | want to add a new Project

ez, | want to add a copy of an existing Project

Mo, | do naot need o add a Project at thiz time

When you add a new solution, the next thing to be added is a project. You will be
prompted with three choices — to add a new project, add an existing project or skipping
the addition of a new project. A project file is needed to compile the results of scripts.
However, if you choose not to add projects but add only sctipts, then the application
returns back to the solutions explorer. You have to then manually add projects to the
solution by right clicking on the solution name in the solution explorer.

Adding a script
When a new project has been added, Parse-O-Matic prompts you to add scripts.

19

PARSE-O-MATIC USER MANUAL — USER INTERFACE

™ create Script for Mew Project? X

Y'ou have created a new Project. A scrpt can be created for thiz Project.
It can be pre-loaded with commonly uzed sections of zcrpt code.

Wihat would pou like to do now?

Create the scrpt file and pre-load it with script code

Create the scrpt file, but leave it blank,

| will add the script myself

You will have three choices — to create the script file with pre-loaded code from the
Parse-O-Matic server, create a blank script or adding the script manually. If you choose
the first option then a script file with basic code is loaded. If a blank script is created,
you need to manually enter all code. If you chose to add script later, then you have to
right click on the project name and add a script.

Adding input and output files

You have to point to the solution explorer to add the input file — the file which is
required to be parsed and add a output file — this file would contain the results of
parsing.

Both of these files can be added manually, else the application will assign an output file
based on the input file specified by you.

Multi-Script Execution

You can add multiple script files to the solution and get multiple outputs at the same
time. This feature allows you to parse one file in multiple ways with multiple scripts to
process at the same time.

As shown below, the sample solution has more than 1 script file and generates output
in more than one way.

20

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Fe E& Vew Ovbg Opsore Wemns Vo S Hety

o SHBE BFNS bR °
Wettome flwmrcs e, w X TJGdsan Cuplere .
h . s
| "Aero®, "Buy windstield washer fismid” SN
ck Tire preamize =a IFece” = W Sunitiew
3 cank® = P Sotapidien
Pazew insscence” = W Ecagt Finy
" "Duy @ saw cut food bowl™ W oS epietiow oo
*Buy cat food” G Scap5 Mgl pece
"Heem”, "Pepait srrzen dooc” W Zorh et prce
FHeem®, "Wash windces® ©. boutfiee
ek 7 Lonet cefteldge Lo lases prihtes™ L) ThemTchaw
ek Ok QUL WV, pArse O Al L0, Cox® © DipdFies
[
0 T LREes QUOTES Ot (EPAIATIE) [Re (COS30108 ALen” Q‘;- ":‘Y‘:
- b .
eC Tan papee L‘v:,.nu;.-..‘-m
e Johs Seith ADOET his propoaal® » Lng Ml et
JSPRane Aary Jomer Abows [er propoas)® oy
qut smvesoe toc Filaon project® G
"PockY, "Take iwvescory of stock Foom 3% 1] reruitesium
| "Rock¥, "Take iwvestory of stock roow 7V = & Pceirg Fasrees
"laisoza™, "Wiate the 200 to take w ploto of w WIame” = o Daps e Serwgy
"lairoze”, "Paist pictace of = ocae Fleying pokec with w cow, = cat, esd & dog” ¥ Dicplap Ade Procenrg
Tleiroze™, *Paiot pictsce 0f » soces Fleaying Teg witk w radbit and = cwe” Ao0nad 10 E wiwg Fle
| e = .
[Covwtw Lag N
[outag X
Start o€ processisng -~
Pmring preject "Seriaplodle”
Pumning acript "SceSaplelew, pace”
Zuzcexa |
Ind of pracexsing
Start af pe
Pmning preject "Sczdeaplelier”
Femzang aceipt "ScrSaxplelev. pace”
Zuzceaz |
Ind of pracessing 3
-

Hrccihecks! M8 Cocecmiog |\ Beskaet Wondos | 9 Wt Lt

Debugger

This feature allows you to debug scripts either before running the solution or
individually. A script can be debugged at the time of creation if you choose to test the
functionality of the script. Based on the debugging results, you may or may not make
changes to the script file. It is also an option for you to write a script completely before

debugging.

The debugging option is optional and it is up to you to debug sctipts. You can also set
break points while debugging in order to run the script one step at a time. The Step
Into functionality allows you to do so. This enables you to execute script parts so that
exceptions noted in the debug console window can be noted and if need be, can be
rectified.

[Cansule tng

(Dwtag.

Error Messape i.ciies SOLLpt 10 expry

Iod uf processing

Brart of proczasing
unning project "nev”
unning 20xipt “vew.pacc”
Duccesa!

Ind of procesaing

Aredasats FConlston | Tlbookmarl Wirdow | T8 Wardh List

21

L

<]

PARSE-O-MATIC USER MANUAL — USER INTERFACE

The console log window is used to show the error or success message of debugging or
stepping-in the code.

This window also displays additional details, which includes a log of the projects
executed, the names of the scripts executed and whether the execution was a success or
failure. It shows the scripts that have errors and the scripts that have run successfully.

Fie Ed View Dabug Optorn Weckme: VausdSider Hep
D - Sdde VLTS b £
‘Weleoae Pfeerws Sopthiangt 1 s MoswMamyal paos udpad tw w w Z7saktmn Daplerer .
1 EASE R L2 R - .;l -qu 0 “.}‘
iCeglicenaw - Sl
. " Newvarsy
= @ NowM sagal
o SoxzFm
% &5 NowMasps! pict
e = W bou File
o L] tregiTabon
= % Oupu Fies
£e U oudpus e
[Consade Loy .
[baeg: F=
Furming script "Beulaaysl ., prce” -~
Sucoexx
Ind of proceasing
ftart of processing
Funning project “NewSasyal®
Funning sccipt "SewMsayal.psor”
fpoomss’
Ind of processing
Start of procesaing
Sunming preject *New@aayal®
TLEOL CMLOPOLY .uvian Compilation ezroxs
Eqror Despripriom fould not cempile 2eripe
Exeor oode suviees
Processing acep ipt line 52
Error Meseage STApt cowpilation ecror
Line 57 of Kewflasyal.pac::
it
8o value afrer If coamasd
End of processing el

Arntiecre] BBk lon PRevkevoet wecve | Wt

The errors are displayed both in a dialog box and in the debug console window. Errors
would also be displayed in case the script file is debugged before it is completed or in
case of programmatic errors:

22

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Processing Halted

Seript iz empty

Errar cateqory Compilation errars
Cescription Zould not compile script
Etrar code 240

Frocessing step Script line 0

oK

As noted above, Parse-O-Matic shows the error category of the error, the description
of the error, the error code and the line of error. This helps you to locate the cause of
the error and the error itself quite easily. This design is consistent with other
commercial compiler designs and IDE.

Results Log
You can view the results window to locate specific searches within the solutions folder.
This window is accessible through the main toolbar and menu bar.

% Fisal sl

[Find ol Tmhanager™ Sl gicess. Find Rlesully 1. Cament Proser ™

WErcaemads B Cens Do | T Renkrasds Winrea |8 Woich 1

23

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Watch List
The variables inside a script can be marked and added to the watch list, ovhere y
can see the values for these variables while running a script.

BOOOR Wt Lt
Fdd™ Nl o Sl Variada
Cotogen)]

Necthan

i kS |+

- Brciests [Mooredeing . tooiswt) Watch List

When you click on the watch list, double clicking on the name field allows you to enter
the name of the variable that needs to be tracked through the watch list. When this
feature is used with breakpoints, you can debug scripts effectively and note the
exceptions in detail. If the checkbox for the Special Variable is checked then it means it
is reserved variable like $Data.

Bookmark Window

This window allows you to bookmark folders. For creating a bookmark, you just need
to click on create folder and add it as a bookmark. It is a way of adding a quick
reference for later uses, as you can add the file name and the line inside the file.

t [Bookmark Window *®

f o Create Folder = Delete Trem

Marme File location

o] Hew

[Find Results E Consale Lag _ElBookmark Window v_J/i Wakch Lisk

You can toggle bookmarks and add them to the bookmark window, by clicking on the
‘Toggle bookmark icon on the right-hand side of the main window. This gets
automatically added to the bookmark window. You can browse through bookmarks as
well, by clicking Prev and Next Bookmark options, next to the Toggle bookmark
icons.

24

PARSE-O-MATIC USER MANUAL — USER

Visual Style Options

™ Parse-0-Matic Free Edition
File Edt “iew Debug Ophon: Windows | Wisual Shles Help

-|=|. L5 - j H .zi ,_-i ﬁ]]' ‘__},‘ £ Default 5 2005)
- . Office 2003
Ofice007Theme

wWelcome Reference Scrzample. pscr

INTERFACE

TrimChar Category
If Category = '' Done
Category = ChangeCase Category 'Hardeoaps!

; Get the description and rewmowe the trailing

L) Y A= 2 EEE
-
k|l | Blue 1
= on either side |A
Black

oy . null lines
ca Silver Text
Spaces.

The IDE allows you to change the look and feel of the editor. You can choose from
three different visual schemes — default, office 2003 and office 2007 theme.

IDE Options for tailoring the environment

The IDE offers you with some editor options, which can be used to customize the behavior and

appearance of the application when it is used.

" Cptions
Startup Editor Defaulk Appearance Editor Default Behavior

General Welcome Page
¥ Check For Updates
[v Dizplay Splazh Screen

OF.

[+ Load Community Tab
[+ Load Reference Tab
[+ Load Quick Links Tab

Cancel

25

(|

PARSE-O-MATIC USER MANUAL — USER INTERFACE

You can set the windows to be loaded on starting up Parse-O-Matic.

If you check “Check for Updates” then the application connects to the Internet to
view updates of the program. If you check “ Display Splash Screen”, then the
application displays a splash screen with Parse-O-Matic logo when you start it.

If you check the boxes for Loading Community, Reference and Quick Links tabs,
these are displayed once you open the application.

" Cptions x
Startup Editor Default &ppearance E ditor Default Behavior

Areas Teuxt
v Indicator Area Iv Lines “rapping Marks
[whord Wrap drea v ‘wirapped Lines Marks
v Selection Area v Indentation Guidelines
[Userdrea ¥ Indentation Block Borders
[Line Mumbers v Column Guides
Iv Changed Lines Marking Iv Outlining Collapzers

Cortral v Tranzparent Selection

v Horizontal Scrollbar
v “Yertical Scrollbar
[w Statuz Bar

[v =P Stule

0k, Cancel

You can set appearances for areas of the script, the text options and the control
toolbars and scrollbars of the editor.

If you check indicator area, then the application highlights this in the script file as to
where changes have been made either as a green or golden brown strip on the left.

Checking the word wrap area, allows you to see the editor with words wrapped.

Checking the selection area, allows you to see the selections made on the editor
highlighted by a maroon line on the left.

If you check user area, the editor allows you to set up the user configuration area

If you check line numbers, the editor shows the line numbers in the script code.

26

PARSE-O-MATIC USER MANUAL — USER INTERFACE

Checking changed lines marking, allows you to see lines which have been changed in a
script

In the control tab, if you check horizontal, vertical scrollbars, status bar and XP style
then the application allows these elements to appear in your editor.

In the text tab, if you check the lines wrapping marks, does not show the wrapped line
marks, which appear as dots on the editor.

If you check the indentation block border and guidelines, then the paragraph based
indentations do not appear on your editor

If the column guidelines checkbox is checked then the column wise indentation is not
shown on the editor

If you check the outlining collapsers checkbox then the outline collapse and expand of
the script code is disabled.

If you check the transparent selection box is checked then code indentation is not
shown

You can also set the default behavior of the editor while running.

Ciptians x
Startup Editor Default Appearance Editar Cefault Behawior
General Tabs

WV Yirtual Space Mode W Usze Tabs

W nzet Mode [v Tah Stops

v iew Wwhite Space Tah Cize:

W word wiap lzi

W Group Undo Auta Indent Maode:

Block -
v Trm Spaces On Save o

] Cancel

27

PARSE-O-MATIC USER MANUAL — USER INTERFACE

In the above options, if you check the virtual space box, then the extra space below the
editor and console window is displayed

If you check insert mode, then insert mode in the editor is enabled

If you check view white space then the editor displays the white spaces in the script
code

If you check the word wrap then word wrapped lines are shown on the editor
If you check the group undo option, then you can undo grouping of code blocks

If you check the trim spaces on save option then you can see that extra spaces are
removed from the script code.

If you check the tabs options — tab stops and use tabs, then you can view tabbing of
the script code in the editor along with the tab size set from the drop down

If you select None from the auto indent mode, then no indentation is enabled; if block
is selected then the editor shows block based indentation else if the smart indenting is
selected, then a space-saving editing is shown in the editor.

Deployables (Enterprise Edition only)
This feature is available only in the Enterprise Edition of the Parse-O-Matic software.

A deployable is a standlonexewtablefile. It gets created with the Build feature. A
deployable exeis the Parse-O-Matic program (with a different name).

When you run a deployable, it does the following steps.

1. Fetch the current Project's settings (such as combo and check boxes) from the
projectfile. Even if the PPS is not going to be displayed, the name of the script file,
input file, and so on, is required. Each of these is the first file listed in a list-of-files
(such as the list-of-files named Input Filesin Solution Explorer).

2. Show PPS (if Display PPSs true for the Project).
3. When the PPS is showing, you can make some changes and then click Start

4. If PPS is showing, the application updates the projectfile so that its list-of-files
(example: Input Fileg and check-boxes (such as Display After Processingnatch
the combo boxes in the PPS; includingch combo box's input box.

5. The application then processes the current Project.

28

PARSE-O-MATIC USER MANUAL — USER INTERFACE

6. An Error Reportwindow is shown if applicable. Note that at this point the PPS is
Notshowing, though the progtess bar iSshowing — though it is probably partially
hidden by the Error Reportvindow.

7. 1f Display After Processing True, the output file is opened in a Viewer Window.

Exception Handling

Whenever an error occurs during script execution, an Exception window is displayed.
When possible, the exception window will display the offending command or line of
the script file in question. The IDE will also attempt to open up the offending script
file and place the cursor at the location of the problem.

At other occasions, the IDE attempts to show system level errors while running a
solution such as shown below:

I' Errar X

@ Errar zaving workzpace file: D:SPOMBENParee-0-M atichSalutionshS ampleshnew. ppro

System Reports
The zerver could not be contacted.

Wildcards
Parse-O-Matic lets you process multiple input files in a single operation (i.e. clicking the
Start button only once) by using “wildcards” in the Input File input box.

For example, if you set the Input File box to *.txt then all files with a .txt
extension will be processed.

Here are some more examples:

Wildcard Mask Interpretation

report??.ixt ireportodo f ol | oweodkhabagtersa.ixt extension

my*.csv imyo followed by one or more char a
Xyz.??? Aixyzo with ancharactér exéension

You cannot specify wildcards for the output file. All output goes to a single output file.

Stacking Wildcards

You can specify multiple wildcards by using semicolons, as in this example:

* txt;*.me

29

PARSE-O-MATIC USER MANUAL — USER INTERFACE

This would process input files with the .txt extension (example: Xyz.txt) and the
.me extension (example: read.me).

There is almost no limit to the number of wildcards you specify, but bear in mind that
when you stack wildcards you could end up processing the same file more than once.
Consider this example:

* IXt;my*.txt

This would process all files with a .txt extension, then all files with a .txt
extension where the file name starts with “my”. Thus, a file named myfile.txt
would be processed twice

You cannot specify multiple file names for the output file. All output goes to a single
output file.

Using the Windows Clipboard
Parse-O-Matic lets you process the Windows text clipboard as if it was a regular text
file.

To process the clipboard as the input file, enter Clipboard in the Input File box.

Tip: Most Windows programs let you copy selected text into the clipboard with
Ctrl-C.

You can also send output to the Windows text clipboard as if it was a regular text file.
To send output to the clipboard, enter Clipboard in the Output File box.

Tip: Most Windows programs let you paste text from the clipboard with Cttl-V.

It is possible to do both at once, processing input data from the clipboard and sending
the resulting output to the clipboard. Of course, after processing, the original contents
of the clipboard will have been overwritten.

Using a URL as input

You can use standard URLs in the Input File box or within your scripts. HTTP,
HTTPS and FTP, amongst others, are supported. Please note that you must make
sure you have enough disk space to hold the downloaded file.

Download files are received in their entirety, before script processing proceeds.

30

PARSE-O-MATIC USER MANUAL — SCRIPTING

Scripting

What is a Script?
Read a Modify
line of datai
ata if
data from req'd
Input File g
Data line , .
is output, Insert ?gdl(ljdata if
ifreq'd g
\ Ignore data if

req'd

A script is a set of instructions that analyze data generated by Parse-O-Matic. Every
time Parse-O-Matic has a new line of data, it sends it to the script for further
processing. The script can make changes to the data before sending it to the output file,
or skip the data altogether.

Here is an example of a script:

Change $OutData 'Cat' 'Dog'
OutEnd $OutData

The first line of this script changes the variable $OutData such that every instance of
the word “Cat” is replaced by the word “Dog”. The second line then sends the altered
variable to the output file.

Here is another sample script:

31

PARSE-O-MATIC USER MANUAL — SCRIPTING

Change $OutData 'Cat' 'Dog'
If $OutData ~ 'Dog' OutEnd $OutData

This is similar to the first example, but it sends data to the output file only if it contains
the word “Dog”.

Preparing Your Script
With only two exceptions (the If and Otherwise commands), scripts never contain
more than a single scripting command on each line.

Blank lines are ignored. Lines that start with a semicolon (the ; character) are also
ignored — these are considered comments. You can also put a comment at the end of
a line, following a semicolon. For example:

This is my script file
If $OutData ” 'Cow' Done ; Ignore all lines containing the word 'Cow'
OutEnd $OutData ; Output the line

It is traditional to line up end-of-line comments, as shown above. It is not mandatory,
and sometimes it is not possible, but it does make the script easier to read. The
horizontal lines in the example are used only as separators — these too can make a
script easier to read, if used sparingly.

File Naming Conventions

Scripts have a file extension of .pscr Projects, .ppro and Solutions, psol Script

Hierarchy

Script hierarchy is a new concept introduced in version 5. In Parse-O-Matic version 4,
there was just one type of file structure, and that was the single script file. If you
wanted to execute a number of different scripts, in a particular order, then a batch file
had to be used to call Parse-O-Matic those number of times that were needed to tun a
sctipt.

In version Parse-O-Matic Version 5, the concept of the Solution, Project and Scripts
was introduced.

A Project can contain one or more script files. A Solution can contain one or more
project files.

32

PARSE-O-MATIC USER MANUAL

— SCRIPTING

L‘i Solution Explorer

ELEEL T oS

[=]- t i eb e

EIEJ M et e
- #8% Script Files

= !ﬁ Output Files

e f | outputtat
[=]- % Support Files

[=]- % Help Filez

El- g Processing Parameters
= g Dutput File Settings
E v Dizplay After Processing
: Append to Exizting File

: Dizplay PPS
[+ @& Changeable In PPS
EEI--@ I el

A Snapshot of the Solution Explorer

El ﬂ_‘, Proceszsing Parameters Screen [FPS]

Another feature of the script hierarchy is the Parameter Processing Screen (PPS). The
PPS screen allows a Solution author to be prompted to enter in various values, before a

script is executed.

This can be useful if the script being run needs to be run against input files whose
name might not be known at design time. Another situation where the PPS can be
useful is where the Solution author is not the person who is running the Solution. If
the end-user is not the author of the script, then this feature comes in handy. This is
also where the IDE’s opening screen, the Quick Links option can be useful to run a

selected solution.

33

PARSE-O-MATIC USER MANUAL — SCRIPTING

34

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Scripting Fundamentals

Values, Literals and Variables
A value is a parameter for a scripting command. It can be specified in the following
ways:

Text' A text string (note the quotes)
15 A number
'15' Another way to represen t a number (i.e. as text)
VarName The name of a variable
VarName[10 20] Substring of a variable (columns 10 to 20 in this
case)
VarName[19] Substring of a variable (a single character)
VarName+ A numeric variable, plus 1 (e.g. MyVar = MyVar+)
VarName- A numeric variable, minus 1 (e.g. MyVar = MyVar -)
VarName(10) An array variable

A “literal” is a parameter in a script command that does not get changed when the
script is running. The first three examples in the table above are literals. Literals are
enclosed in 'quotes’ — unless they are numbers, in which case the quotes are optional.

A ““variable” is a named spot in your computer's memory that holds some data.
Variables must start with an unaccented letter (A to Z). Case is ignored, so variables
named MyVar, myvar and MY VAR are considered the same.

Substring ranges in square brackets such as MyVat[1 10] must refer to fixedrange of
column positions. If the script needs to vary the substring range, you should use the
Cols command.

Array Variables

Array variables are recognized as such because the vatriable name is immediately
followed by the “open parenthesis” character.

Array indices are all treated as strings. Variable indices are only supported in one-
dimensional arrays. For example, the following are valid:

Variable indices:

Index=1

Begin Index #< 10
MyArray(Index) = Index * 10
Inc Index

End

35

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Literal indices:

MyArray(1,1)=1
MyArray(1,2)=10
MyArray(1,3)=100
MyArray(2,1)=2
MyArray(2,2)=20
MyArray(2,3)=200

Uninitialized array elements are assigned the value contained in the special variable
$NotDefined. By default this contains the value '[ND]', but you can assign a different
value to $NotDefined if you wish.

Special Variables

Parse-O-Matic makes available certain internal variables. You can recognize these as
“special” variables because — unlike user-defined variables — these start with a dollar-
sign ($) character.

Because these variables are used by Parse-O-Matic itself, you should avoid altering
them. Your script can either make a copy of a special variable (e.g. MyData =
$OutData), or use commands such as Cols to extract the part you want (e.g. MyData =
Cols $OutData 10 20).

Frequently-Used

Here are the special variables that are used most often.

Special ~ Explanation

Variable

$OutData Data that the application is sending to the script

$Data The line of input data (see explanation below)

$PrevData The previous line of input data read by the
application

$ReadLines The number of lines (or records) read from the input
file

The $OutData and $Data variables refer to the same thing. In older Parse-O-Matic
applications, such as TextHarvest, the input data (i.e. $Data) is preprocessed by the
application itself before being passed to the script as $OutData. (The variable name
$OutData literally means “preprocessed data sent as output to the script”). In such
cases, your script should use $OutData rather than $Data, as it may not contain the
actuahput data from the file.

The $OutData variable can usually be altered without causing problems for the
underlying application.

36

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Input/Output

Here are the special variables related to input and output:

Special Variable Explanation

$ActuallFN Name of the current input file (including path)
$ActualOFN Name of the current output file (including path)
$Append ingOutput Set to Y' if output is being added to pre - existing
file
$BytesOutCount Number of bytes sent, so far, to the output file
$ClipboardOutput Set to "Y' if output will go to the Windows
clipboard
$InputFileBytes Number of bytes (including buffered) read from
input
$OutCSVRec The accumulator string used by the OutCSV command
$Wildcarding Y = Multiple input files; N = Processing only one
file
$CfgODBCConnection Set ODBC database connection string

User Interface

Here are the special variables related to the user interface:

Special Explanation

Variable

$CaptionX Caption for the first option box (usually 'Option
&X"

$CaptionY Caption for the second option box (usually 'Option
&Y

$CaptionZ Caption for the third option box (usually 'Option
&Z')

$IFNMask What actually appears in the Input File box

$OptionX First options box 00000These variables contain the
values

$OptionY Second options box 00000in the input boxes near the
bottom

$OptionZ Third options box 00000of the Parsing Parameters
window

$CfgShowPPSNote Displays custom text on the PPS window

37

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Miscellaneous

Here are various special variables that do not fit into the previously mentioned
categories:

Special Explanation

Variable

$AppParms(n) Array of parameters (see application's documentation)

$Compare Dynamic comparator (e.g. If X $Compare Y Done)

$EndOfData See iManual Read Commandso

$lgnore See explanation below

$NotDefined Contains the value for uninitialized array variables

$Scrambled 'Y' = script has been scrambled (user cannot view
source)

$StepName Processing step (see application's documentation)

$Success See explanation below

$TestMode Set to 'Y' if the application is running in Test Mode

The $lgnore Variable

The $Ignore special variable is used when a function returns a value but you are not
interested in what that value is. For example:

$lgnor e = Parse MyData '2*/' '3*/' 'Cut'

This removes everything between the second and third slashes in the variable named
MyData. Using $Ignore helps make a script self-documenting. That is to say, if you
place a result in $Ignore, it serves as a reminder that you are not using the information
elsewhere in the script.

You may sometimes get an error message that looks something like this:

Warning: The following variables are referenced only once in ScrMyScript
MyVariable

While this error message is usually caused by a mistyped variable name, it can also
happen if you use a “throw-away” variable to get rid of a value — and only use it that
one time. To avoid getting this message, use the $Ignore variable.

The $Success Variable

Certain commands (such as Overlay and SetFromkFile) set a special variable named
$Success. This is set to "Y' (meaning, “Yes, it succeeded”) if the command succeeded
and 'N' (for “No”) if it failed.

Consider this script sample:

MyVar = SetFromFile 'MyText.txt'
If $Success = 'N' MyVar = 'No dat a'

38

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

If the SetFromFile command fails — which would happen if the file was not found —
then $Success is set to N If it succeeds, though, $Success is set to "Y'

When a script first runs, $Success is initially set to 'N'. Once a command sets the value
of $Success, it retains its value until set by another command. Because of this, you
should test $Success immediately after the command that sets it. Consider this
situation:

MyVar = SetFromFile 'MyText.txt'
Overlay MyVar 'CUSTOMER' 'Customer’
If $Success ='N ' then MyVar = 'No data’

The programmer has apparently forgotten that Overlay also sets $Success. A better
approach would be as follows:

MyVar = SetFromFile '"MyText.txt'
If $Success = 'N' MyVar = 'No data’
If $Success ="'Y' Overlay MyVar 'CUSTOMER' 'Custom er'

This example performs the tests and operations in a more logical order.
Special Syntax

Continuation of Long Lines

If a script line is too long for convenient viewing in your text editor, you can continue
it on the next line by using the >> symbol. For example:

CustomerInfo = CustSalutation FirstCustName MiddleCustName >>
LastCustName '(' CustomerPhoneNumber ')’

You can put comments (i.e. a semicolon followed by some text) after the continuation
symbol, though if you put the continuation symbol aftefthe start of a comment, the
following line of script is considered to be part of the comment.

In the example above, the continuation line was indented by two spaces. This is not
mandatory, but it does serve as a reminder that the line is a continuation.

39

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Embedding Quotes in Text Literals

Since text literals begin and end with 'quotes’, you cannot simply put a quote inside a
text literal. To represent a quote within a text literal, put two quotes in a row. For
example:

MyVar = 'Isn"t "scripting” fun?'

This will set MyVar to:

Isn't 'scripting' fun?
Note that each instance of a doubled-up quote has been replaced by a single instance.

Untypeable Characters

You can specify either hexadecimal or decimal representation of bytes when coding a
literal:

MyVar = $0A $0D
MyVar = #10#13

The first example uses hexadecimal notation to define the Carriage Return and
Linefeed characters. The second example uses decimal notation to do the same thing.

You can also mix text and untypeable characters, as in these examples:

MyVar = 'Hello'$0A$0D
MyVar = 'Hello' $0A $0D
MyVar = 'Hello'#010#013

Any of the examples above will set the vatiable MyVar to 'Hello' followed by the
Carriage Return and Linefeed characters.

40

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

Free and Advanced Scripting

Parse-O-Matic Free Edition lets you use the majority of the scripting language features
at no extra charge. Some of the more powerful language capabilities, however, require
the purchase of a license. These editions are the Parse-O-Matic Basic Edition,
Parse-O-Matic Business Edition and the Parse-O-Matic Enterprise Editions.

If you use an Advanced Scripting command or other higher-edition feature and do not
have the License, the program will display a pop-up window. You can skip over this
window, so you can make sure that the Advancing Scripting command is appropriate
for your requirements. You may try out the Advanced Scripting commands at no
charge for up to 30 days.

You can visit:

http://www.parseomatic.com/

to learn more about obtaining the Parse-O-Matic Basic Edition, as well as the Business
and Enterprise Editions.

Sample Scripts
Parse-O-Matic is delivered with sample Solutions (which typically have the word
Sample in their names).

Here is a list of the sample solutions included with Parse-O-Matic.

Script File Name Input File to Use Adv What is Demonstrated
Sample Solution 01. psol ThingsToDo.txt - Basic techniques
Sample Solution 02. psol ThingsToDo.txt - Basic techniques
Sample Solution 03. psol InputSample01.txt - Basic techniques
Sample Solution 04. psol ToDolListFixed.dat - Fixed -record - length
input
Sample Solution 05. psol ToDolListDelim.dat - Character - delimited
input
SampleAdvSolution01.psol ThingsToDo.txt Y Advanced techniques
SampleAdvSolution02.psol Scr.txt Y Advanced techniques
PSTMain.psol Thi ngsToDo.txt Y Main scripting
commands
PSTOutCSV.psol ThingsToDo.txt Y OUTCSV command
PSTMR.psol InputSample02.dat Y RecLenZero script

Adv = Uses Advanced Scripting commands

It is best to study these scripts in the order they are listed above.
All of the sample scripts have default input and output file names defined.

In addition to the sample scripts included with Parse-O-Matic, you can find additional
sample scripts in the Pyroto, Inc. Knowledge Base, available at
www.Parse-O-Matic.com.

41

http://www.parseomatic.com/

PARSE-O-MATIC USER MANUAL — SCRIPTING
FUNDAMENTALS

About Older Parse-O-Matic Applications
Parse-O-Matic was originally created in 1985. We have learned a lot about parsing since
that time, and the design of Parse-O-Matic Scripting reflects this.

As our long-time customers have probably noticed by now, Parse-O-Matic Scripts are
similar to the POM files used by our old DOS-based program, but the POM files are
not compatible. For example, the old $FLINE variable is now represented by $Data.
This does not mean that the old DOS-based program is no longer useful. Certain kinds
of operations (such as those performed on binary files) are currently impractical with
Scripting, and some arcane capabilities (such as bit-wise operations and date arithmetic)
are not implemented.

With the release of Version 5, the concept of Solutions and Projects have been
introduced. Also, filename extensions have changed, to better reflect Windows
standards.

Script files created with version 4 can still be used in version 5. Simply copy and paste
in your sctipt into a blank Script file contained within a Solution/Project. It is best not
to simply add your existing version 4.x script file to a project, as file character encoding
has changed.

Those running Parse-O-Matic with batch files should note all command-line
parameters have changed. Also, if your batch files gathered data from your relational
database, you may wish to start using the built-in ODBC connectivity. Similarly, those
processing HTML or FIP’d files, may wish to switch to the internally available
commands that support those transports and/or data formats.

42

PARSE-O-MATIC USER MANUAL — DATA ASSIGNMENT
COMMANDS

Chapter

Data Assignment
Commands

Equals (Set Variable)
Format # 1 vl =v2 [v3 v4 v5]
EXAMPLES MyVarl = 'Hello' : Set var to a literal
MyVar2 = MyVar3 ; Set one var to another
MyVar4 = OtherVar[10 20] ; Columns 10 to 20
MyVar5 = 'How ' ‘are ' 'you?' ; Append three literals
PURPOSE Sets v1 to v2 (and any other values listed thereafter)

PARAMETERS vl - Variable being set
v2 - Value
v3 - Value (any number of values can be appended)

-OR-

Format # 2 vl =12

Example MyVar6 = Cols xyz 5 8 ; Set var from a function
Purpose Sets v1 from a function

Parameters vl - Variable being set

f2 - Function (with any parameters it may use)

A “function” is a command that returns a value. The Cols command is an example of a
function, while the OutEnd command is NOta function because it does not return a
value.

43

PARSE-O-MATIC USER MANUAL — DATA ASSIGNMENT
COMMANDS

Len
Format vl=Lenv2[v3v4V5..]
Examples MyVarl = Len MyVar2 ; If MyVar2 is 'ABC', MyVarl will
be '3’
MyVar3 = Len X1 X2 ; Measure total len gth of appended
values
Purpose Sets v1 to the length (number of characters) in v2
Parameters vl - Variable being set
v2 - Value being measured
v3 - Value (any number of values can be appended)
ParseName

ParseName v1 v2 v3 v4 v5 v6 v7

Example ParseName 'John Smith' 'No' addform first middle last
suffix

Purpose Breaks up a name into its component parts

Parameters vl - The unparsed name

v2 - Control setting: detect company names?

v3 - Variable to receive address form (e.g. 'Mister’)

v4 - Variable to receive first name (e.g. 'John')

v5 - Variable to receive middle name (e.g. 'J.")

v6 - Variable to receive last name (e.g. 'Smith’)

v7 - Variable to receive suffix (e.g. 'the third’)
Controls v2 = Yes/No

ParseName provides some basic capability for breaking up a proper name. The results
cannot be completely accurate because there are so many possible variations. Thus, if
you use ParseName (typically to create a CSV record), you should review the results
afterwards and modify your script to handle exceptions.

In addition, you should not assume that ParseName will return the same results when
using different versions of Parse-O-Matic. The ParseName command is occasionally
updated to improve its “intelligence”. ParseName is a handy time-saver, but there are
no definitive rules for this kind of operation.

If the control setting (v2) is set to 'Yes', ParseName can detect many company names,
placing the entire value in v4. This, too, is not entirely reliable. For example, 'John
Jones Enterprises' will be recognized as a company, but 'Les Entreprises John Jones'
(i.e. the company name in French) is not.

Despite its limitations, ParseName is a helpful command: it can greatly reduce the
effort required if you are converting a large list of names.

44

PARSE-O-MATIC USER MANUAL — DATA ASSIGNMENT
COMMANDS

Plural

Format vl = Plural v2 v3 [v4]

Example Word = Plural 'cat' NumBeasts ; If NumBeasts = 3
returns 'cats'

Purpose Provisionally adds the letter 's' to a word if it is
appropriate

Parameters vl - Variable being set
v2 - The word being counte d, which might have an's'
added
v3 - The number of v2 items being considered
v4 - Control setting (Preserve length? Yes/No)

Controls If v4 ='Yes', we append a space to v1 if the 's' is
omitted.
This maintains the alignment of columnar output.

Defaults v4 ='No'

This simple command makes it easy to avoid unattractive “tentative plurals” such as
“item(s)”. For example:

Items = Plural 'item' ltemCount
OutEnd 'We have ' ltemCount ' Items ' in stock’

If ItemCount is 1, the output reads "We have 1 item in stock'. For any other number,
an 's' is added. For example: 'We have 3 items in stock'. If ItemCount is a real number
— even 1.0 — an 's' is added, since that is the way it would normally be spoken in
context (e.g. “The score is one point zero points")

SetFromFile
Format vl = SetFromFile v2 [v3]
Examples MyVarl = SetFromFile ‘MyFile.txt'
MyVar2 = SetFromFile 'C: \ Stock \ Greeting.txt'
Purpose Reads data from a file into a variable
Parameters vl - Variable being set
v2 - File name
v3 - Control settings
Controls Text' = The file is a text file (may end with Ctrl -
Z)
‘Binary' = The file is a binary file
Defaults v3 = 'Text'
Similar Cmds LookUp

If v3 is not specified, the file is considered to be text, and any end-of-line (CRLF)
characters are stripped from the start and end of v1.

SetFromFile sets the $Success variable to 'Y' if the file was successfully read, 'N'
otherwise.

If the filename (v2) does not specify a path, SetFromFile will use the Search Path to
look for it.

45

PARSE-O-MATIC USER MANUAL — DATA ASSIGNMENT
COMMANDS

In theory, SetFromFile can read in a file that is several billion characters long. In
practice, however, the size of the file you can read in is limited by your computer’s
memory.

SplitCSV
Format vl = SplitCSV v2 [v3 [v4]]
Example ParsedCSV = SplitCSV FileD ata
Purpose Converts data in CSV (Comma Separated Value) format
intoa format that is much easier to take apart with
the Parse command (using 'Cut Relaxed', for example)
Parameters vl - Variable being set
v2 - The CSV data
v3 - The string with which to r eplace the old delimiter
v4 - The old delimiter (usually a comma or a semicolon)
Defaults v3 = Carriage - return character (ASCII #13)
v4 = The comma character
Similar Cmds Parse

SplitCSV parses a line of comma-delimited text, replacing the commas with the new
delimiter (v3). Any double-quotes (") around fields are removed, while doubled-up
quotes ("") are replaced with single ““ quotes. For example:

MyVar ="Mary "'The Parser" Jones";123.45;"416 -555-1212™
ParsedCSV = SplitCSVA"'/""}

This would set the ParsedCSV variable to the following value:

Mary "The Parser" Jones / 123.45/ 416 -555-1212

When processing CSV data, bear in mind that in some countries the standard delimiter
is the semicolon (;) because they use a comma as the decimal point.

46

PARSE-O-MATIC USER MANUAL — DATA ALTERATION

COMMANDS

Chapter

Data Alteration
Commands

Change
Format
Examples

Purpose

Parameters

Controls
Defaults
Similar Cmds
Notes

Change v1 v2 v3 [v4]

Change MyVar 'Cat' 'Dog"' ; Change 'Cat' to 'Dog'

Change MyVar 'Dog'" ; Remove all 'Dog' strings
Changes v1 such that every occurrence of v2 is changed
tov3

vl - Variable to be changed

v2 - Value to look for

v3 - Value to replace it with

v4 - Control setting

MultiPass/OnePass

v4 = 'MultiPass'

ChangeCase, KeepChar, MassChange, Padded, TrimChar
The compar ison is case - sensitive. 'Cat' does not match
'CAT".

In the default MultiPass mode, the Change command repeats the process until the
value being sought (v2) is no longer found. However, consider this situation:

X ="ABCD'

Change X 'A" 'AA' 'MultiPass'

The Change command notices that repeating the process would never end (because v3
contains v2), so it only scans v1 once.

47

PARSE-O-MATIC USER MANUAL — DATA ALTERATION
COMMANDS

ChangeCase
Format vl = ChangeCase v2 [v3]
Example ChangeCase MyVar 'HardCaps'
Purpose Changes text case (e.g. 'Cat' to ' CAT)
Parameters vl - Variable being set
v2 - Original value
v3 - Control setting
Controls
Original (v2) Control (v3) Result (v1)
'Fred Jones' ‘Uppercase’ 'FRED JONES'
'FRED Jones' '‘Lowercase' ‘fred jones'
‘fred jones' ‘Capitalize’ 'Fred Jones'
'FRE D jones’ 'Capitalize’ 'FRED Jones'
'FRED jones' '‘HardCaps' 'Fred Jones'
'WX- XY123' 'HardCaps' 'Wx - Xy123'
'FRED jones' ‘NoChange' 'FRED jones'
Defaults v3 ='Uppercase'
Similar Cmds Change
KeepChar
Format KeepChar v1 v2
Examples KeepChar MyVarl '/AZ' ; Retain A to Z only
KeepChar MyVar2 '/$/09/." ; Retain $, 0to 9, and
period
KeepChar MyVar3 '/AZ/az/' ; Retain only letters
KeepChar MyVar4 *AZ*az' ; Same as previous example
Purpose Filters out everything but the character s and
character - ranges specified.
Parameters vl - Variable being modified
v2 - Control setting
Similar Cmds Change, TrimChar

The first character of the control setting (v2) is the delimiter that will separate the
characters or pairs of characters. Paired characters represent a range, while single
characters represent precisely that character.

48

PARSE-O-MATIC USER MANUAL — DATA ALTERATION

COMMANDS

Padded
Format
Examples

Purpose

Parameters

Defaults

Similar Cmds

TrimChar
Format
Examples

Purpose
Parameters

Defaults
Similar Cmds

vl = Padded v2 v3 [v4 [V5]]

MyVarl = Padded 'AB' 4 ;'AB !
MyVar2 = Padded 'CD' 5'Leftt ;' CD'
MyVar3 = Padded 'EF' 6 'Center' ;' EF '
MyVar5 = Padded 'XYZ' 7 'Left' 'x' ; "xxxxXYZ'
Pads a value to a specific length (number of
characters)

vl - Variable being set

v2 - Original value

v3 - Length of result (number of characters)
v4 - Edge to pad: 'Left' 'Right' ‘Center’

v5 - Character with which to pad

v4 = 'Right'

v5=""'(i.e. a space)

Change, Insert

TrimChar v1 [v2]

TrimChar MyVarl

TrimChar MyVar2 'B M,L R$'

Removes unwanted characters from a variable
vl - Variable to be changed

v2 - Trimming specifications

v2="B"'

KeepChar

The “trimming specifications” comprises pairs of characters describing how you want
the variable trimmed. Each pair of characters is treated as follows:

. The first character is the instruction (e.g. B = Both edges)

. The second character is the actual character you want trimmed away

Here is an explanation of the various trimming instructions:

Instruc tion

Meaning

<0 w>»

Trim all instances of the character

Trim both sides of the variable (left and right)

Trim the left side of the variable

Trim the right side of the variable

Replace multiple instances of the character wit h just one

49

PARSE-O-MATIC USER MANUAL — DATA ALTERATION
COMMANDS

Consider the following variable:

MyVar =" xxx/llyyy zzz/ll' ; Note the spaces on both ends

Here is how various trimming specifications would affect the xyz variable:

Trim Spec Trim Spec Result

L' "xxxlllyyy zzz/ll'' 'R’ " xxx/il yyy zzzliI'
‘B’ "xxxlllyyy zzz/II' ‘A 'xxxlllyyyzzz/II'

‘B Ay' "Xxx/ll zzzlII ‘A AZ' xxx/llyyyll

‘M/' ' Xxxlyyy zzz/"' ‘B M/' 'Xxxlyyy zzz/'
‘MxMyMzM/" " xly z/' 'B Lx' 'xxx/llyyy zzzlll

As you can see from the B Ix' example, the trimming instructions are executed

simultaneously. If you want to trim both spaces and then trim off the leading x's, you
need to do two TrimChar commands in a row.

50

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

Chapter

Output Commands

Odb

Format Odb vl [v2v3v4..]

Purpose Same as OutEnd, but se parates the fields with vertical
bars

Parameters Same as OutEnd

Similar Cmds OutRuler

You can use the Odb (“Output Debug”) command while developing or fixing a script.
The vertical bars let you see if the variables have spaces on either side. Once your script
is working propetly, you can do a quick search for “Odb” to see if you left behind any
debug lines.

51

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

OutCsSVv

Format OutCSV vl [v2 [v3 v4 v5...]]

Examples OutCsV " 'Init'

OutCSV CustName
OutCSV ItemPrice 'Unquoted’
OutCSV " 'Done’

Purp ose Generates CSV (Comma Separated Value) output; can also
be used to generate columnar reports with columns that
can be turned on and off

Parameters vl - Value to send to output (or control information)
v2 - Control setting
v3 - If present, v3 and subse guent values are
concatenated to v1

Controls The format of v2 is:

[+/ -][Init/Done/Stop/Quoted]...J/Unquoted]...]J/Control]

'Init' starts the accumulation of a new line of CSV

output.

'‘Done' sends the accumulated output to the output file.
'Stop' termina tes accumulation without sending output.
'Quoted' puts quotes around the field.

'Unquoted' adds the field without quotes.

'+'and ' -' turn fields on and off.

"..."' changes the default quoting state

‘Control' adjusts OutCSV settings.

Defaults v2 ='Quo ted' (unless default quoting state has been
changed)

Similar Cmds OutEnd, Odb

Notes Nothing is actually sent to the output file until the

‘Done' step (i.e. v2 = 'Done’).
The various controls are explained in more detail below.

OutCSV Init

When v2 is 'Init', v1 can be used to specify an alternative separator (other than the
usual comma). Typical alternatives include the semicolon (;) and the Tab (ASCII
decimal 9). To save you having to look up ASCII values, OutCSV recognizes certain
codes for the separator. Here is an overview of the v1 settings...

vl Explanation

" Use default field separator 0 this is usually a comma
, You can also specify a comma explicitly

‘TAB' The tab character

'‘CR' The carriage - return character

'CRLF" The carriage - return and lin efeed characters

'LFCR' Linefeed then carriage -return (non - standard & rarely used)
‘NONE' No separator (remember: if you use '

You can, in fact, set the separator to any string. Used with padded text (or OutCSV's
Control setting with the MaxWidth and MinWidth options), you can use OutCSV to
generate columnar reports. Your script can then turn entire columns on and off using
the '+'and '-' feature.

52

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

Outputting a Field

When v2 is 'Quoted' or 'Unquoted' or null, OutCSV accumulates the field for the
current output line. The line is not actually sent to output until the 'Done' step is
reached. Here is a brief example:

OutCSsV " 'Init'

OutCSV 'Fred Jones'
OutCSV 1234.56 'Unquoted'
OutCSsV " 'Done’

This will output a two-field CSV line, with quotes around the first field but not the
second one. If the field is quoted, any occurrence of the quote character () is replaced
by double-quotes, as per standard CSV conventions.

OutCSV Nulis

If you have several null fields to insert, you can use the Nulls option:

OutCSV 5 'Nulls'

This would accumulate 5 null fields for the current output line.

Nothing is done if the parameter is 0 (zero) or a null (). If the value is more than 1000,
OutCSV stops with an error message.

OutCSV Done and Stop
When v2 is 'Done', OutCSV sends the accumulated line to the output file. The vl

value is not used.

An infrequently used alternative to "Done' is 'Stop'. In this case, the output is NOfent to
the output file but is saved in the special variable $OutCSVRec. You can use this
method if you do not wish to send the output immediately. In such case, you should
copy the result from $OutCSVRec to another variable before doing another set of
OutCSV commands.

OutCSV Control

When v2 is 'Control', OutCSV consults v1 for a command that configures how it will
operate. Control settings remain in effect within the script until changed.

The following options are available:

53

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

Command Example Explanation

MinWidth OutCSV 'MinWidth 25 Pad fields (with spaces) to
specified width

MaxWidt h OutCSV 'MaxWidth 25' Truncate fields that exceed
specified width

SetWidth OutCSV 'SetWidth 15' Set MinWidth and MaxWidth to the
same value

QuoteChar OutCSV 'QuoteChar @' Specify new character for quoting
fields

Separator OutCSV 'Separator ;' Change de fault separator (originally
comma)

To set the quoting character to a space, use 'QuoteChar Space'. When the QuoteChar
is a space, it is NOtdoubled-up when it is found in a field, since the only reason one
would set the QuoteChar to a space is to create columnar reports.

You can also use 'QuoteChar None' to mean “don't put any quoting characters around
purportedly quoted fields”. This feature is useful if you are using OutCSV to produce
columnar reports.

The MaxWidth and MinWidth settings take into account the presence or absence of
quotes when calculating width. Also, unquoted fields are assumed to be numeric and (if
necessary) are padded on the left, while quoted fields are padded on the right.

Turning Fields On and Off

Whenever the first character of v2 is ' (the minus character), all subsequent fields are
“turned off”. To turn them back on, set the first character of v2 to '+' (the plus
character). Here is an example:

OutCSsV " 'Init'

OutCSV 'Fred Jones' ; Customer name field

OutCSV 1234.56 ' -Unquoted' ; Current balance
OutCSV '416 -555-1212''+" ; Customer phone number
OutCSV " 'Done’

In this example, the “Current balance” field will not appear in the output.

The ability to turn fields on and off can greatly simplify the testing of scripts that
generate CSV output. You can also use this feature to create reports with columns that
can be turned on and off.

Changing the Default Quoting State

The default state for OutCSV field accumulation is 'Quoted'. However, sometimes you
have a lot of 'Unquoted' fields in a row and it is a chore to have to type 'Unquoted'
repeatedly. You can redefine the default state by putting an ellipsis (three periods) after
'Quoted' or 'Unquoted'. Here is an example:

OutCsV " 'Init'

54

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

OutCSV 1

OutCSV 2 'Unquoted... '
OutCSV 3

OutCSV 'A' 'Quoted...'
OutCSV 'B'

OutCSV " 'Done’

This would output the following line:
"1",2,3,"A","B"

This alteration to the default only lasts until the "Done' step; OutCSV always starts with
the default state of 'Quoted'.
Switchable CSV/Columnar Reports

Here is an example of some code that can be easily switched between CSV output and
columnar output, simply by changing one variable (called MyVar here):

csvbelim = "' ; Nor mal setting (i.
Begin MyVar ="' Y' ; Did we turn on columnar mode?
CSVDelim="" ; Separate fields with space, not comma
OutCSV 'MinWidth 15' 'Control' ; Pad fields out to 15 characters
OutCSV 'MaxWidth 15' 'Control' ; Truncate any fields wider than 15
OutCSV 'QuoteChar None' ‘Control' ; Ignore the quotes around quoted fields
End
OutCSV CSVDelim 'Init' ; Start of OutCSV accumulation
OutCSV FirstName ; A quoted field
OutCSV LastName P A quoted field
OutCSV Balance 'Unquoted’ ; Unquoted field (typical for numbers)
OutCSV " 'Done’ ; Send fields to output file

Simply by setting the vatriable MyVar to 'Y', a CSV (Comma Separated Value) file
becomes a columnar report. The result may not be elegant, but if you are looking for
fast results without having to load the output into a spreadsheet, this can be a real time-
saver.

OutCSV Examples

Parse-O-Matic includes a sample script named SCrPSTOUtCSV.txt . It provides
examples of the techniques described above. You can also find CSV-oriented sample
scripts in the Pyroto, Inc. Knowledge Base, available at www.Parse-O-Matic.com.

55

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

OutEnd

Format OutEnd v1 [v2 v3 v4...]

Examples OutEnd 'Customer List' ; One value to
output
OutEnd 'Customer Name: ' CustName ; Two values to
output

Purpose Sends data to the output file, followed by a Carriage -
Return and a Linefeed (the standard end - of - line
characters for text files)

Parameters vl - Value to send to output file

Similar Cmds

v2 - Value (any number of values can be appended)
OutNull, Output, OutRuler

OutFile
Format OutFile v1 [v2]
Example OutFile 'C: \ MyFiles \ Output.txt' 'Append'
Purpose Changes the current output file
Parameters vl - Name oft he output file
v2 - Control setting
Controls ‘New' = Start with an empty file
'Append’ = Add to the end of the file (if it exists)
Defaults v2 = 'New'

If the file name is not fully qualified (i.e. does not contain a path) the file will be placed
in the default output folder, as set by the Path button.

If a file is opened as New and a file already exists with that name, the old file is
renamed with a .bak extension. For this reason, you should not use OutFile to switch
to a file with a2 .bak extension.

The fully-qualified name of the current output file is found in the $ActualOFN
variable. If you copy this value into a vatiable, you can return to the original output file
later on by using OutFile with 'Append'.

OutNull
Format OutNull
Purpo se Sends a blank line to the output file (i.e. just a

Similar Cmds

Output
Format
Purpose

Parameters
Similar Cmds

Carriage - Return and a Linefeed).
OutEnd, Output, OutRuler

Output v1 [v2 v3 v4...]

Same as Out End,
characters

Same as OutEnd

OutEnd, OutNull, OutRuler

but doesof-homnedend

56

fifend

PARSE-O-MATIC USER MANUAL — OUTPUT COMMANDS

OutRuler

Format OutRuler v1 [v2 v3 v4...]

Purpose Same as OutEnd, but includes a measuring scale
Parameters Same as OuteEnd

Similar Cmds Odb

You can use OutRuler while developing a script to help you measure where columns
start and end. It outputs the line as OutEnd does, but includes a measuring scale above
it

57

PARSE-O-MATIC USER MANUAL — COMPARATORS

Chapter

Comparators

Overview
A “comparator” is a parameter used in scripting commands which compares one value
to another. For example:

If AreaCode = '416' Output 'Toronto'

In this example, a comparison is being made between the variable named AreaCode
and the literal '416'. The equals sign is the “comparatot”.

Now consider this command:

If AreaCode = '514' Region = 'Montreal

In this case, the first equals sign is a comparator because it is compating two values.
The second equal sign is NOta comparator; it is actually the Equals command, which
assigns a value to a variable.

Types of Comparators
Parse-O-Matic Scripting supports several types of comparators:

What It Does
Literal Compares values character by character
Numerical Compares the arithmetic values of real or integer numbers
Length Compares the length of one value with a number
Pattern Compares a value against a pattern

These are explained below in more detail.

58

PARSE-O-MATIC USER MANUAL — COMPARATORS

Literal Comparators
Here is a list of the literal comparators:

Comparator Meaning Comments

= Identical

<> Not identical

> Higher See Note # 1
>= Higher, or identical See Note # 1
< Lower See Not e#1
<= Lower, or identical See Note # 1
A Contains

~ Does not contain

Is Basically the same See Note # 2
Longer Length is longer

Shorter Length is shorter

SamelLen Length is the same

Note # 1: Depends on sort order. For a discussion of what this means, refer to the
section “Literal Comparisons and Sort Order”.

Note # 2: The two values are considered basically the same if they contain the same
text, regardless of upper or lower case, and any surrounding whitespace. Thus '
CHESHIRE CAT"' is the considered the same as 'Cheshire Cat'.

Examples

With some restrictions (discussed later), literal comparators work on both numeric and
alphabetic data. Here are some examples of literal comparisons that are true:

'ABC'<> 'ABCD' '333' <> '444'
'ABC'<= 'ABCD' '333'<= 444

'‘ABC' < 'ABCD' '333' < '444'

'‘ABC' Shorter 'ABCD' ‘333" Samelen '444'

'ABC' >= 'ABC' 'ABC' <> 'CDE'

'ABC' <= 'ABC' 'ABC' <= 'CDE'

'ABC' = 'ABC' 'ABC' < 'CDE'
'ABC' SamelLen '‘ABC' 'ABC' SamelLen 'CDE’
'ABC' ~ 'AB' 'ABC' ~ 'CD!

'ABC' 'ABC' 'ABC' ~ 'cC

Note especially the * (contains) and ~ (does not contain) comparators. These are
extremely useful when analyzing data.

Literal Comparisons and Sort Order

Some of the literal comparators compare text according to "PC-ASCII sort order'. For
plain English text, this works fine. However, if your text contains diacritical (accented)
characters, you should be aware that some comparisons will not work correctly. For
example, the 'o-circumflex' character (6) appears in the PC-ASCII character set aftethe
PC-ASCII value for 'Z'.

59

PARSE-O-MATIC USER MANUAL — COMPARATORS

Numerical Comparators
Here is a list of the numerical comparators:

Comparator Meaning

#= Equal

‘ #<> Not equal ‘
#> Greater
#>= Greater, or equal ‘
#< Less than

‘ #H<= Less than, or equal ‘

Numerical comparators avoid the problem of sort order. For a discussion of this, see
Numeric Comparisons and Sort Order.

Examples

Here are some examples of numeric comparisons (encoded variously with and without
surrounding quotes) that are true:

345 #<> 567 '1.23' #<> '9.87"
345 #<=567 '1.23' #<= '9.87"
567 #> 345 9.87 #> '1.23'
'3' #< '6.2'

The last example compares an integer ('3") with a real number (6.2"). The numeric
comparators automatically check if one of the numbers contains a decimal point.

In such case, the comparison is performed in 'real number' mode, which imposes the
same accuracy restrictions as those imposed by the CalcReal command. This might
create a problem if you are comparing a decimal number with a large integer, but this is
rarely a cause for worty, since most data analysis tends to compare similar types of
numbers.

Numeric Comparisons and Sort Order

You can get unintended results when you use literal comparators on numbers. For
example, this does not work as you might expect at first glance:

count = count+
If count >= 2 OutEnd count

You might expect this to output any number greater than or equal to '2', but in fact you
will get a different result, because the comparison is a literal (text) compatison. In the
example above, 2' to '9" are greater or equal to '2', but '10" (which starts with '1") is
considered eSSt is evident when you sort several numbers alphabetically:

110 11 15 100 2 20 200 3 30

As you can see, the values 1, 10, 11 and 15 come before 2' when sorted alphabetically.

60

PARSE-O-MATIC USER MANUAL — COMPARATORS

To compare numbers, you should use the numerical comparators. The correct way to
code the previous example is as follows:

count = count+
If count #>= 2 OutEnd count

Written in this way, numbers greater than or equal to 2 will be sent to the output file.

Length Comparators
Here is a list of the length comparators:

Comparator Meaning

Len= Equal

Len<> Not equal

Len> Greater

Len>= Greater, or equal
Len< Less than

Len<= Less than, or equal

The length of the value on the left side of the comparator is compared with a number
on the right side of the comparator. For example:

If $OutD ata Len= 0 NullLine ='Yes'

Of course, you could accomplish the same thing with this command:

If $OutData = " NullLine = 'Yes'

However, in most cases the length comparisons will save you some coding because
you will not have to use the Len command to obtain a variable for comparison.

Comparing Patterns
The Matches comparator compares a value against a pattern that uses “regular
expression” syntax (explained later). For example:

If MyVar Matches 'c[aou]t' GotMatch = 'Yes'

This will set the vatriable GotMatch to 'Yes' if MyVar contains 'cat', 'cot' or 'cut' (case is
ignored).

The pattern uses “regular expression” syntax (described in the next section) and must
be the second item in the comparison.

In order for the compatrison to be “true”, the item being compared to the pattern must
match the pattern precisely — the Matches comparator does not look for substrings.

61

PARSE-O-MATIC USER MANUAL — COMPARATORS

If you want to allow a substring to match, use the Comprises comparator. For

example:

If MyVar Comprises 'c[ao]t' GotMatch = 'Yes'

This will set GotMatch to 'Yes' if MyVar includes either the word 'cat' or 'cot. Thus,
the strings 'He had a cat' and 'He had a cot' both Comprise the pattern, as do the

1
b

strings 'cat', 'cot’, 'Cat, 'scattet' and so on.

Regular Expressions

A “Regular Expression” is a sequence of characters where certain characters have a
special meaning and are not matched literally. For example, a period will match any
character (including the period), while the dollar-sign (§) matches the end of the line of

text.

In the following list, the letters x, y and z stand in for any character.

AXXX Match a sequence of characters at the start of a line

XXX$ Match a sequence of characters at the end of line

X.y Match a single character (between 'x' and 'y" in this examp

[xz] Match a set of characters ('x' and 'z' in this example)

[x -2] Match a range of characters (this example covers 'x' to 'z')

x* Match zero or more occurrences of the preceding character

[xyz]* Match zero or more occurrences from the preceding s et
[x -z]* Match zero or more occurrences from the preceding range

[*xyz] Match any character but the ones specified

[*x -z] Match any character but the ones in the specified range

le)

The backslash (\) character has a special meaning in regular expressions:

\ X Means fAtake the next character
For example: \ [means the actual [character
rather than the start of a set or range

\'t Means fia tab charactero (ASCII

Basic Regular Expressions

Here are some examples of matches:

Ct Match Cat, Cot, Cut, Cxt, C3t etc.

Claou]t Match Cat, Cot, Cut only

B..d Match Bird, Bred, Bead etc.

“Dog Match Dog only if it is at the beginning of a line
Moose$ Match Moose only if it is at the end of a line
Pa*d Match Pd, Pad, Pa ad, Paaad etc.

Using the Asterisk

l'iterallyo

character

The last example given above uses the * character to indicate zero, one or more
occurrences of a particular character — in this case, the letter 'a'. Incidentally, this is

62

9

PARSE-O-MATIC USER MANUAL — COMPARATORS

differefitom the way the Windows operating system uses the * wildcard character. In
Windows, the * wildcard matches “any single character”.

In regular expressions, however, the asterisk is specific about what you are looking for.
That is why 'Pa*d' would not match 'Parsed'; the astetisk means “match zero or more
of the preceding character specification”.

If you actually want to search for Pa' followed by one or more letters and then 'd', the
correct syntax is:

Pafa - z][a - z]*d

This means that we want to match 'Pa’, then a letter in the range from 'a' to 'z, then
some number (including zero) of characters in the 'a' to "2 range, and finally the letter
'd". The character string Parsed’ would meet these critetia, as would 'Pad’, Paid' and
"Packed'.

Advanced Regular Expressions

Here are some more complicated examples of regular expressions:

C["ou]t Matches Cat, Cxt and so on, but not Cot or Cut
Clao]*t Matches Ct, Cat, Caat, Cot, Coot, Cooot, Coat, Coaoat
etc.
[0-9][0 -9]* Matches numbers such as 0, 1, 01, 10, 25, 0990, 9999 etc.
-[0-9][0 - Matches neg ative numbers such as -0, -1, -19, -12345etc.
9*

In the last example, [0-9] is specified twice to ensure that at least one digit is found.
Bear in mind that the * character means “zero or more occurrences”. If you had only
specified '-[0-9]*' you would get a sputious match within the string 'Hello - there' since
the '-' character is indeed found, followed by Zer@ccurrences of the digits 0 through 9.

You can create fairly complex patterns using regular expressions. Consider this
example:

\$[0 - 9][0 - 9]* \.[0 -9][0 - 9]

This would match dollar amounts with two decimal places, such as $0.00, $03.23,
$3.14, $9.99, $1234.56 and so on.

63

PARSE-O-MATIC USER MANUAL — COMPARISON COMMANDS

Chapter

Comparison Commands

Overview
For a broader overview of comparisons in scripting, consult one of the following
sections of this user manual:

. Comparators

. Flow Control Commands

The commands described below deal with special cases involving comparison.

AlphaNumPatt

Format vl = AlphaNumPatt v2 [v3]

Example X = AlphaNumPatt '416 -287-8892' ; Set X to 'NNN - NNN
NNNN'

Purpose Creates a pattern of characters representing the format

of variable v2 in terms of alphabetic, numeric and
special characters
Parameters vl - Variable being set
v2 - Value being analyzed
v3 - Control setting

Controls v3 is a TrimChar specif ication
Defaults v3 =" (no trimming)
Similar Cmds Numeric

See also the Matches or Comprises comparators

AlphaNumPatt returns an 'A' for every letter (uppercase or lowercase) in v2, and an 'N'
for every digit. All other characters (spaces, dashes etc.) are left as-is. Here are some
sample results:

Value of Value of Result Value of Value of Result

v2 v3 (v1) v2 v3 (v1)

'12 - 34-56' (Not set) 'NN- NN NN '$12.34" (Not set) "$NN.NN'
'AB 1234 (Not set) 'AA NNNN' 'XY 999" B’ 'AA NNN'

64

PARSE-O-MATIC USER MANUAL — COMPARISON COMMANDS

AlphaNumPatt is handy for detecting the presence or conformity of a phone number,
serial number, part number etc., and is sometimes more convenient than the Matches
and Comprises comparators.

CompareCtri

Format CompareCitrl v1

Example CompareCtrl 'Match Case'

Purpose Changes the default case sensitivity of comparisons
Parameters vl = Control setting

Controls IgnoreCase/MatchCase

Similar Cmds Que

Unless otherwise instructed by CompareCtrl, comparisons ignore text case, so that (for
example) 'Cat' is considered the same as 'CAT' or 'cat. You can use CompareCttl to
change this behaviour.

CompareCttl affects comparisons Onlyit does not affect commands that search for
text, such as Change, FindPosn, Lookup, Parse, Insert and so on.

Numeric

Format vl = Numeric v2 [v3]

Example X = Numeric '3.14159' 'Yes' ; Set X to'Y'

Purpose Evaluates whether or not a value is numeric

Parameters vl - Variable being setto 'Y’ or 'N' (for Yes and No)
v2 - Value being assessed
v3 - Control setting: allow deci mal point?

Controls No/Yes

Defaults v3 = 'No' (do not allow a decimal point 0 accept only
integers)

Similar Cmds The Matches and Comprises comparators

This function returns "Y' if v2 is numeric (i.e. a number). Otherwise, it teturns 'N'.

A leading - or + character is considered an acceptable part of a numeric value. Multiple
decimal points (e.g. '12.34.56") are not accepted as numeric. Scientific notation (e.g.
'1E32') is not accepted as numeric.

65

PARSE-O-MATIC USER MANUAL — COMPARISON COMMANDS

Que
Format vl = Que v2 k3 v4 [v5]
Example MyVar = Que 'Cat' ='Dog' ; Compare two strings
Purpose Saves the result of a comparison
Parameters vl - Variable being setto "Y' or 'N' (for True or
False)
v2 - Value to be compared
k3 - Comparator
v4 - Value to compare to v2
v5 - Control setting
Controls IgnoreCase/MatchCase
Defaults v5 ="IgnoreCase' (unless overridden by CompareCtrl)
Similar Cmds If, Begin

Que (short for “Question") is useful when you need to save the result of a comparison,
or if you need a single instance of case sensitivity. For most compatisons, however, you
will use If or Begin.

66

PARSE-O-MATIC USER MANUAL -—

Positional Commands

Cols
Format
Example
Purpose
Parameters

Defaults
Similar Cmds
Notes

FindPosn
Format
Examples

Purpose
Parameters

Control s
Defaults
Similar Cmds
Notes

ScanPosn
Format
Examples
Purpose

vl = Cols v2 v3 [v4]
MyVar = Cols OtherVar 10 20 ; Columns 10 to 20

Copies a range of columns (i.e. character positions)
vl - Variable being set
v2 - Value (usually a variable) being copied

v3 - Starting column

v4 -

Ending column

v4 = v3 (i.e. copy one character)
Equals (Set Variable) with a range specified
If v3 is less than or equal to 0, it is
If v3 points to a position beyond the end of v2, v1

will

be null.

If v4 points to a position beyond the end of v2, it is
treated as if it was the same as the length of v2.

vl = FindPosn v2 d3 [v4]
MyVarl = FindPosn
MyVar2 = FindPosn 'ABCC' '>*C' ; Set MyVar2 to '4'
Find the character position of text
vl - Variable being set

v2 - Value being searched

d3 -
\Z/

Decapsulator

Decapsulator control settings

'‘ABC' 'BC'

Exclude/Include; IgnoreCase/MatchCase
v4 ="Include MatchCase'
ScanPosn
If nothing is found, v1 is set to '0' (zero).

| f

t he

AExcl

udeo

willpoint to the character position

finds.

ScanPosn v1 v2 v3 v4 [v5]
See below
Searches v3 for the start and end columns (character

decapsu
after

POSITIONAL COMMANDS

Chapter

treated as 1.

; Set MyVarl to '2'

|l ator
the strin

setti
git

67

ng

S

PARSE-O-MATIC USER MANUAL — POSITIONAL COMMANDS

positions) for one of the strings or patterns listed in
V4.
Parameters vl - Variable being sedumnfiFr omd ¢
v2 - Variable being set: iToo col umn

v3 - The value being searched
v4 - The list of strings or patterns for which to

search
v5 - Control settings
Controls Any/First/Last; IgnoreCase/MatchCase; RegExp
Defaults v5 ="Any IgnoreCase'
Similar Cmds FindPosn, Parse
Notes Sets $Success ('Y' = something was found).
If nothing is found, v1 and v2 are both set to '0’
(zero).

If RegExp is included in the control settings, each
string is treated as a regular expression pattern
rather than an actual string

When you are analyzing data, a common requirement is to find out if one of several
strings can be found in another string. For example, you might want to find out if a
name starts with a salutation (Mr., Mrs., Ms.). ScanPosn lets you perform such a search
with a single command.

For example, to search for a salutation in a string:

ScanPosn from to MyVar '/Mr./Mrs./Miss/Ms.'

If MyVar contains one of the scanterms (e.g. 'Mrs.") in the scanlist, ScanPosn will set
the appropriate “From” and “To” variables. Thus, if MyVar contains 'Ms. Mary Jones',
the “From” variable is set to '1' and the “T'o” variable is set to '3' (since 'Ms.' goes from
positions 1 to 3 in MyVar).

If none of the scanterms is found, the “From” variable is set to '0' and the special
variable $Success is set to 'N'. Thus, if MyVar contains 'John Smith', no salutation is
found, and the ScanPosn command shown above will set the “From” vatriable to '0'.

The Scanlist

The scanlist can contain one or more scanterms. The firStcharacter in the scanlist is
interpreted as the delimiter (separator) for the scanterms. Thus, the following scanlists
are all valid:

'IMr./Mrs./Miss/Ms.' ; Delimiter is: /
'XMr.xMrs.xMissxMs.' : Delimiter is: x
'‘@Library@School@Gymnas ium@Clinic/Hospital' ; Delimiter is: @
'/Cow.' : Delimiter is: /

The first example ('/Mr./Mrs./Miss/Ms.") has alteady been demonstrated. The second
example uses the letter 'x' as a delimiter. This might be a bad choice for a delimiter; it
would cause a problem if one of the scanterms contained an 'x', since it would be
treated as tWGscanterms. For example:

68

PARSE-O-MATIC USER MANUAL — POSITIONAL COMMANDS

'xJohnxTrixiexFred'

The name "Trixie' contains an 'x', so it would be broken down into two scanterms ("Tti'
and 'ie'). You should always choose a scanlist delimiter that does not appear in the list
of scanterms.

Accommodating Variation

When you design a scanlist, you should take into account the possibility that the input
might contain strange variations. Consider this command:

ScanPosn x y 'Mr John Smith' '/Mr./Mrs./Ms.'

This search will fail because the 'Mt' is followed by a space, not a period. A more
forgiving command would be:

ScanPosn x y 'Mr John Smith' '/Mr./Mrs./Ms./Mr [Mrs IMs '

This would successfully locate the 'Mr ' string, and set x to '1' and y to '3". (The '3'
points to the space.)

HANDLING PREFIXES AND SUFFIXES

When designing a scanlist, you should consider that a scanterm might be part of a
word. For example:

ScanPosn x y 'Mississippi Sue' '/Mr./Mrs. /Miss/Ms.'

This will find the 'Miss' in Mississippi, even though this is not part of a salutation. A
more appropriate command would be:

ScanPosn x y 'Mississippi Sue' '/Mr./Mrs./Miss /Ms.

The space after 'Miss' in the scanlist ensures that if it is found, it will be separate from
any word following it.

The trailing space is not necessary for the scanterm 'Mr., since no word contains a
petiod. However, if you do include spaces after the petiods (as in '/Mr. /Mrs. /Miss
/Ms. ") the consistency of rationale may simplify your subsequent script code.

You must also take suffixes into account. For example:

ScanPosn x y 'Zinc Enterprises' '/Inc/Co/Enterprises'

This will find the 'inc' in "Zinc'. You can add a space in front of each scanterm to
ensure that it is separated from any other word:

ScanPosn x y 'Zinc Enterprises' '/ Inc/ Co/ Enterprises'

69

PARSE-O-MATIC USER MANUAL — POSITIONAL COMMANDS

You may be tempted to always put spaces on both sides of a word, to handle both
prefixes and suffixes. However, consider this example:

ScanPosn x y 'Wazoo Inc' '/ Inc/ C o/ Enterprises '

None of the scanterms is found, because the 'Inc' in the source string does not end in a
space. The control settings (described next) can help you address this kind of problem.

Control Settings

Unless otherwise instructed, ScanPosn will find the first scanterm that appears
anywhere in the source string, and return its start and end positions. It will also ignore
text case (e.g. 'CAT' = 'Cat'). You can modify this behaviour by using the optional
control setting,.

LAST, FIRST AND ANY

The "Last' (i.e. rightmost) control setting tells ScanPosn to find the scanterm that has
the highest “To” value with the lowest “From” value. This means that all of the
scanterms are evaluated. Consider this command:

ScanPosn x y 'SHREWxxXCATxxxMOUSExxx' '/CAT/DOG GY/MOUSE/ELK' 'Last'

ScanPosn finds 'CAT', but continues looking to see if thete are any better matches to
the right. Eventually it finds MOUSE and sets x to '15' and y to '19' (pointing at
'MOUSE').

If you use the 'First' (i.e. leftmost) parameter, ScanPosn will check all the scanterms to
find out which one has the lowest “From” position with the highest “To” value. For
example:

ScanPosn x y 'SHREWxxXCATxxXxMOUSExxx' /CAT/DOGGY/MOUSE/ELK' 'First'
This will set x to '9' and y to '11" (pointing at 'CAT").

If you do not specify 'First' or 'Last', ScanPosn assumes you mean to use the 'Any’'
control setting. It finds the first scanterm it can, and ignores the rest. Here is an
example.

ScanPosn X y 'SHREWxxXCATxxXxMOUSExxx' /CAT/DOGGY/MOUSE/ELK'’

The first scanterm is 'CAT", and this can be found at positions 9 to 11. ScanPosn will
return those values, and ignore the rest of the scanterms.

The '"Any' technique is useful if you want to know if one of the scanterms appears in
the source string, but you are not interested in finding out which one. (You can specify
'Any' explicitly, but since it is the default control setting, this is not necessary.)

70

PARSE-O-MATIC USER MANUAL — POSITIONAL COMMANDS

THE “BEST MATCH” PRINCIPLE

Note: The “Best Match” principle does not apply to the 'Any' control setting. It applies
only to 'First' and 'Last’ searches.

To use the ScanPosn command effectively, you must understand the concept of 'the
best match'. This can be illustrated with an example:

ScanPosn x y 'MegaWhizco International' /CO/WHIZCO/MEGAWHIZ' 'Last'

The ScanPosn command finds the scanterm 'CO' at positions 5 to 6. However, it
continues looking for an even better match.

It finds that "WHIZCO' is just as far to the right (i.e. it ends at position 6), but has a
lower starting position. This makes it a better match.

The next scanterm (MEGAWHIZ") has a lower starting position, but its ending
position is not as good for a 'Last' search because it is not as far to the right.

As a result of all this, ScanPosn will set x to '5' and y to '10' — pointing to the “From”
and “To” columns for WHIZCO'.

In other words, when ScanPosn is looking for the 'Last' scanterm, it will first identify
the found scanterms which have the highest ending position, and then choose the
longest one.

Here is an example using a 'First' search:

ScanPosn xy' Our catalog is enclosed' /CAT/MOOSE/CATALOG/DOG' 'First'

ScanPosn finds 'CAT" at positions 5 to 7, but as it continues checking the scanterms, it
finds that 'CATALOG' is just as far to the left (i.e. it starts at position 5), but it is a
better match since it has a higher ending position.

As a result, ScanPosn will set x to '5' and y to '11".
The “Best Match” principle does not affect "Any' searches. For example:

ScanPosn x y 'Our catalog is enclosed' /CAT/MOOSE/CATALOG/DOG'

This sets x to '5' and y to '7". Since this is a 'Any' search, ScanPosn stops looking as
soon as it has found a match.

When doing an "Any' search, you cannot be sure if any of the other scan terms appear
in the source string. For example:

ScanPosn x y 'Our cat and dog are upstairs' /C AT/DOG'

71

PARSE-O-MATIC USER MANUAL — POSITIONAL COMMANDS

This will find 'CAT" and stop looking for additional matches. If you change the order
of the scanlist, you will get differegilues:

ScanPosn x y 'Our cat and dog are upstairs' /DOG/CAT'

This would give different values for the “From” and “To” variables. This is normal
behaviour; an 'Any' search is useful only for detecting if one of the scanterms appears
in the source string. After doing an 'Any' search, you will typically check the special
variable $Success to see if a string was found.

Finding Patterns with ScanPosn

You can include the control setting “RegExp” (meaning “Regular Expression”) to
indicate that ScanPosn should look for a pattermf characters rather than specific
characters. For example:

; Scale - e L1 -

Source = 'Kitt y Cats Are Cool'

ScanlList = ‘/c.t/co*I

ScanPosn pl p2 Source ScanList 'First RegExp'
ScanPosn p3 p4 Source ScanList 'Last RegExp'

This would set the following values:

pl=7
p2=9
p3=16
p4 =19

Regular Expressions are explained in the “Comparators” section of the user manual.

72

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

Chapter

Decapsulators

Overview
A “decapsulator” is a command parameter that defines a search for where a string of
characters either begins or ends.

If that definition was not particulatly helpful, it is because decapsulators cannot be fully
described by a single sentence. But we encourage you to read through this section,
because decapsulators are very important in Parse-O-Matic Scripting. Here is the
reason why:

Decapsulators let a single Parse-O-Matic Scripting command accomplish what
might take dozens of commands in a standard programming language.

The underlying concept is this: when analyzing data, the part you are interested in (the
“field”) is typically surrounded ("encapsulated”) by some kind of distinctive text. A
decapsulator looks for the distinctive text on either side of the data you want and thus
helps you extract the field.

Sometimes the “distinctive text” appears more than once in the data you are
examining. Decapsulators can handle this situation.

Sometimes one edge of the field is the beginning or end of the data you are examining,
so there is no “distinctive text” to look for. Decapsulators can handle this situation,
too.

Quick Reference
Here are some sample decapsulators:

AFromo Decapsul ator iToo Decapsul ato

'23' From column 23 onwards Up to column 23
'‘AB' After first occurrence of 'AB' Before first 'AB'
'"1*CD’ After first occurrence of 'CD’ Before first 'CD’
'5*EF' After fifth occurrence of 'EF' Before fifth 'EF'

73

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

'<*GH' After fir st occurrence of '‘GH' Before first 'GH'

>*J' After last occurrence of 'IJ' Before last 'lJ'

" From left edge of data From right edge of data
‘-2 Two columns in from the right Same

Each of these techniques is explained below in more detail.

A Simple Example
Here is an example of how decapsulators work. Consider the following commands.

SourceVar = 'AAABBBCCC'
ResultVar = Parse SourceVar '3*A' '1*C'

The second command means “Set ResultVar to everything between the third
occurrence of 'A" and the first occurrence of 'C'.” In other words, ResultVar will end
up containing 'BBB'.

Why Decapsulators are Necessary

When analyzing data, the fields you are interested in are sometimes arranged in tidy
columns — but not always. Quite frequently, a field will start after some kind of
delimiter, as in the following example.

SourceVar = 'Mouse,Gazelle,Mouse,Elephant’

Here the fields are separated by commas — a commonly-used format for data known
as CSV (Comma Separated Values).

Extracting, say, the second item from free-form data is rather awkward if you are using
a standard programming language. Fortunately, Parse-O-Matic Scripting has been
developed with precisely this kind of situation in mind.

Using decapsulators, the Parse command lets you extract the “Nth” item. For example,
to extract the third item in the free-form example above, you could use this command:

ResultvVar = Parse SourceVar '2*' '3*

This means “Set the variable ResultVar by looking in SourceVar and taking everything
between the second comma and the third comma”. ResultVar would thus be set to
"Mouse'.

Introduction to Occurrence Numbers
Let's have another look at that last command.

ResultVar = Parse SourceVar '2*' '3*

The first decapsulator (ie. the 2% part) is the “From” specification. The second
decapsulator (i.e. the '3* part) is the “To” specification. It is interpreted as follows:
P % P p

74

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

3 means fithe third occurrence"
* marks the end of the occurrence number
, is the text you are looking for

Decapsulators can be used to find more than a single character. Let's say that (for some
odd reason) a variable named xyz has been set such that each field is separated with a
pair of X's, as in the following example (with the XX strings highlighted for clarity).

Xyz ='mouse XXgazelle XXmouse XXelephant'

You can extract the third item with this command:
abc = Parse xyz '2*XX' '3*XX'

N
Variabletoset | || ||
Variable to search | | | AiTod text being sought
AFromd occurrence number | ATod occurrence
AFromdo text being sought

This command sets the variable abc to 'mouse’, since it is found between the second
and third occurrences of XX.

Sample Application

The Parse command is particulatly useful for extracting information from CSV
(Comma Separated Value) files. Here is an example of a CSV file:

"Mouse","Gazelle","Mouse","Elephant”
"Dog","Giraffe","EIK","Mongoose"
"Monkey","Snake","Caribou","Trout"

These fields could be extracted with this series of commands:

fieldl = Parse $OutData '1*" '2*"
field2 = Parse $OutData '3*" '4*"
field3 = Parse $OutData '5*" '6*"
field4 = Parse $OutData '7*" '8*"

For the first line of the input file, field] is set to 'Mouse', field2 is set to 'Gazelle', and so

on.

Occurrence Number Syntax
Occurrence numbers must be larger than zero. The following lines are NOtvalid Parse
commands:

fieldl = Parse $OutData '0*" '2*" ; "From" decapsulator is zero
field2 = Parse $OutData ' -1¥ 2¥ s "From" decapsulator is
negative

75

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

The occurrence number must always be followed by an asterisk (the * character) so
you can search for a number. Consider the following example (the meaning of which
would be unclear without the asterisk):

MyVar = Parse 'xxx2yyy2zzz2' '1*2' '2*2'

This sets MyVar to the text occurring between the first '2' and the second 2. In other
words, MyVar is set to 'yyy'.

Finding the First and Last Occurrence
A decapsulator can refer to “the lasbecurrence":

xyz = Pars e 'AaaBAbbBAccB' '>*A' '>*B'

In both decapsulators, the > symbol means “the last occurrence”. Thus, the command
means, “Set the xyz variable to everything between the last A and the last B”. Thus, the
xyz variable is set to “cc”.

You can also use the < character to mean “the firStoccurrence”, though this is
somewhat redundant, since the following commands are equivalent:

abc = Parse 'AaaBAbbBAccB' '<*A' '<*B'
abc = Parse 'AaaBAbbBAccB' '1*A' '1*B'
abc = Parse 'AaaBAbbBAccB' '‘A' 'B'

All three commands would set the abc variable to 'aa'.

Finding the Next Occurrence

When using occurrence numbers for certain kinds of data, you will often find that the
“To” occurrence number is 1 (one) more than the “From” occurrence number.
Consider this example:

xyz = 'AB,CD,EF,GH'
Fieldl = Parse xyz " '1*
Field2 = Parse xyz '1*," '2*;'
Field3 = Parse xyz '2*," '3*'

For Field3 you are extracting everything between the second and third comma. It can
become tiresome to write code like this — always adding one to the “From”
occutrence number. Fortunately, you can use the “next occurrence” symbol '@*' in the
“To” decapsulator:

Xyz
abc

'AB,CD,EF,GH'
Parse xyz '2*''@*

76

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

This will set the “From” position to the second comma, and the “To” position to the
comma after that (i.e. the third one). The '@*' symbol means “Look for the To text
starting immediately after the From text”.

Note: The “next occurrence” symbol (@*) can only be used in the “To” decapsulator.

Positional Decapsulators
Note: Positional decapsulators imply that operations proceed from or to the exact
character position indicated, regardless of the control settings.

You can specify a number to indicate the “From” or “To” character position. In this
mode, the Parse command behaves exactly like the Cols command. Thus, the
following two commands accomplish the same thing:

Xyz
Xyz

Parse MyVar '10" '20'
Cols MyVar '10' '20'

As such, this is not particularly helpful. However, you can combine positional
decapsulators with other types of decapsulators, as in this example:

MyVar = 'ABCD/abcd/
abc = Parse MyVvar '3' '1*/'

"This will set the variable abc to 'CD".

Negative Positional Decapsulators

You can also count backwards from the right edge of the data. Consider this example:

MyVar = 'ABCDEFG'
xyz = Parse MyVar ' -3t -2

This will set the vatiable xyz to 'EF'. (The last character in a variable is represented by
position -1")

Using Positional Decapsulators Safely

You need to be careful when you use positional decapsulators. If, for example, you use
a negative positional decapsulator, and you end up referring to a character before the
beginning of the string, it isn't clear to the Parse-O-Matic engine what you “meant” by
that. (In all likelihood, you didn't mean anything; these situations sometimes atise if you
have not considered all possible variations in format of the input data.)

For the reason just noted, and others that will become evident as you write scripts: if
there is a chance that a positional decapsulator will refer to a character position of zero
ot less, or if it might refer to a position beyond the end of the data, your script should
check the length of the data before trying the command.

77

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

The Plain Decapsulator
The occurrence number is not always needed. Either the “From” or “To” decapsulator
can be represented as a plain (non-numeric) string, as in the following example.

Oldvar = 'zzzABChelloXYZzzz'
NewVar = Parse OldVar 'ABC' 'XYZ'

This would set the variable named NewVar to 'hello' since it means:
1. Copy from the character following the first 'ABC'
2. Copy up to the character preceding the first 'XYZ'

This is, of course, equivalent to the following command, which uses occurrence
numbers:

NewVar = Parse OldVar '1*ABC' '1*XYZ'

In general, it is best to explicitly give occurrence numbers, unless you know that the
format of the data is not going to change.

Unsuccessful Searches

When a command that uses decapsulators does not find the search text, it does as little
as possible. For example, if a Parse command does not find the encapsulating text, it
sets the variable to a null (). Here are two examples:

Parse 'ABCDEFGHIJ' '1*K' '1*J" ; There is no 'K'
Parse 'ABCDEFGHIJ' '1*A' '1*X' ; There is no 'X'

abc
abc

To illustrate this principle further: if the Overlay command does not find the search
text, it does nothing at all, as in the following example.

abc = '"ABCDEFGHIJ' ; Set a variable
Overlay abc 'K' 'LMNOP' ; There is no 'K', so nothing is done

If the “From” value is less than the “To” value, the Parse-O-Matic engine will display
an error message, then terminate further processing. For example:

abc = Parse abc 'ABCDEFGHIJ' '1*J" '"1*A' ;'J' comes after A

This kind of failure typically happens if the data contains an odd arrangement of text
that you had not foreseen. In such case, it would not be reasonable for processing to
continue; you need to be warned about departures from what your script implies you
expected.

The Control Setting
Commands that use decapsulators typically have a “control setting” that allows you to
adjust the way the command is performed. A few examples follow.

78

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

The Parse command's control setting tells Parse whether to include or exclude the
surrounding (i.e. searched-for) text. By default, the surrounding text is excluded (unless
the decapsulator is positional). However, if you want to include it, you can add 'Include’
at the end of the Parse command, as in this example:

xyz = Parse 'aXcaYcaZc' '2*a' '2*c' 'Include’

This tells the command to give you everything between the second 'a' and the second
'c' — includinge 'a' and 'c". In other wotds, this sets the vatiable xyz to 'aYc'.

You can also set the Control specification to 'Exclude’, though since this is the default
setting for Parse, it isn't necessary. Here is an example:

xyz = Parse 'alca2ca3c’ '2*a’ '2*c' 'Exclude’
This sets the variable xyz to '2'.

You can specify several control settings at once, separated by spaces. By default, the
Parse command's control setting is '"Exclude MatchCase' but you could set this to (for
example) 'Include IgnoreCase'.

The Null Decapsulator
Here is a helpful variation of the “From” decapsulator:

means AStar firstf romantdet er in the value being a

A similar variation can be used with the “To” decapsulator:

means AEnd with the | ast character in the val

If you use the null (") decapsulator for “From” or “To”, the “found” value (the first
character for “From”, or the last character for “T'o”) will always be included (see the
section “Overlapping Decapsulators” for an exception to this rule). Here is an
example:

Xyz = Parse 'ABCABCABC' " '2*C"

This sets the variable xyz to '"ABCAB'. The “From” value (i.e. the first character) is NOt
excluded. However, when Parse finds the “To” value (i.e. the second occurrence of the
letter C) it IS excluded. If you want to include the second 'C', you should write the
command this way:

xyz = Parse 'ABCABCABC' " '2*C' 'Include'

Incidentally, the following two commands accomplish the same thing:

xyz = Parse 'ABCD' " "
xyz ='ABCD'

79

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

They are equivalent because the Parse command means “Set the variable xyz with
everything between (and including) the first character and the last character”.

Why Null Decapsulators Work Differently

It may not be immediately obvious why decapsulator-enabled commands treat the null
(") decapsulator differently. The examples given here are very simple, and not
representative of real-world applications.

In day-to-day usage, though, you will frequently find it helpful to be able to specify a
command that says, “Give me everything from the beginning of the line to just before
such-and-such” or “Give me everything from such-and-such a point until the end of
the line."

For example, here is a command that means “Give me everything from just after the
dollar sign, to the end of the line":

xyz = Parse 'Please give me $199.00' '1*$' "

This sets xyz to “199.00”. If you want to include the dollar sign, write the command
this way:

xyz = Parse 'P lease give me $199.00" '1*$' " 'Include’

In this example, the 'Include’ control setting affects the way the “From” decapsulator
works, since it is using an occurrence number. The null decapsulator is not affected.

Overlapping Decapsulators

Earlier, it was mentioned that the text found by the null decapsulator is “always
included” and is not affected by the 'Exclude' control setting. There is an exception to
this: if the null decapsulator's “found text” is contained in the text found by the other
decapsulator, it Carbe affected. For example:

xyz = Parse 'ABCDEFABCDEF' " '1*AB' 'Exclude’

This command means “Give me everything between the first character and the first
occutrence of AB”. Since the two items ovetlap (ie. the first 'AB' includes the first
character), the first character does indeed get excluded. As a result, the xyz variable is
set to an empty string ().

Here is another example.

xyz = Parse 'ABCDEFABCDEF' >*F' " 'Exclude’

This command means “give me everything between the last occurrence of F and the
last character”. Both decapsulators refer to the same character (i.e. the final 'F), so it is
excluded. As a result, the xyz vatiable is set to an empty string (").

80

PARSE-O-MATIC USER MANUAL — DECAPSULATORS

Note: In some circumstances, the FindPosn command is NOtaffected by this
exception. It will do its best to make sense of your request if the decapsulators overlap
and one of them is a null decapsulator.

Parsing Empty Fields
Consider the following command, which is operating on CSV (Comma Separated
Value) data.

xyz = Parse ',,,JJOHN,SMITH" '2*' '3*/

There is nothing between the second and third comma, so the xyz vatiable is set to "
(an empty string).

Now consider this command:

xyz = Parse ',,,JJOHN,SMITH" " '

You are asking for everything from the first character to the first comma (which also
happens to be the first character). Obviously, there is nothing “between” the two
characters, so the xyz variable would be set to " (an empty string). This may be what
you wanted, but whenever you are dealing with a field at the beginning or end of data,
and there is a chance the field might be empty, it is a good idea to test your script to
make sure that it does what you expect.

81

PARSE-O-MATIC USER MANUAL — DECAPSULATOR
COMMANDS

Decapsulator Commands

Overview
This section documents the specific decapsulator commands. For a broader overview
of decapsulators, please see the Decapsulators section of this user manual.

Insert
Format Insert v1 d2 v3 [v4]
Examples Insert Var '10' 'Cat' ; Insert 'Cat' at column 10
Insert Var ' -1''X" ;s Insert! X' before last char
Insert Var '>*A"'Y' ; Insert 'Y' before last 'A'
Insert Var 'B' 'Z' 'Exclude’ ; Insert 'Z' after first
B
Purpose Inserts v3 into v1 at the position determined by d2
Parameters vl - Variable being modified
d2 - Decapsulator
v3 - Value to insert at the position found by v2
v4 - Decapsulator control settings
Controls Exclude/Include; IgnoreCase/MatchCase
Defaults vd = '"Include MatchCase' ("Includeo mean
befoneod
Similar Cmds Change, Overlay
Notes If decapsulator d2 is not found, nothing is done.
Sets $Success ("Y' = decapsulator value was found).
Overlay
Format Overlay v1 d2 v3 [v4]
Examples Overlay MyVar '10' 'Cat' ; Overlay 'Cat' at column 10
Overlay MyVar '<*A' X' ; Overlay first 'A" with 'X'
Overlay MyVar '3*B''Y" ; Overlay third 'B' with 'Y"
Overlay MyVar '>*C''Z' ; Overlay last 'C' with 'Z'
Purpose Overwrites v1 with v3 at the position determined by d2
Parameters vl - Variable being modified
d2 - Decapsulator
v3 - Value to overwrit e at the position found by v2
v4 - Decapsulator control settings
Controls Exclude/Include; IgnoreCase/MatchCase
Defaults v4 ="Include MatchCase'
Similar Cmds Change, Insert
Notes If decapsulator d2 is not found, nothing is done.
If necessary, v1 will be lengthened to make room for
v3.

Sets $Success ("Y' = decapsulator was found).

82

PARSE-O-MATIC USER MANUAL — DECAPSULATOR
COMMANDS

Parse
Format vl = Parse v2 d3 [d4 [v5]]
Examples See below
Purpose Parses free - form data
Parameters vl - Variable being set
v2 - Value being searched
d3 - AiFomd decapsul ator
dd - iToo decapsul ator
v5 - Decapsulator control settings
Controls Exclude/Include; IgnoreCase/MatchCase; Cut; Relaxed
Defaults d4 = "' (Nul I decapsul ator, meaning
line")
v5 = 'Exclude MatchCase'
Similar Cmds FindPos n, ScanPosn

Parse is one of the most powerful commands in the Parse-O-Matic Scripting
repertoire. For an introduction to working with decapsulators (along with many
examples of the Parse command), please see the Decapsulators section of this user
manual.

The “Cut” Control Setting

The Cut control setting removes the text that is found in the variable being examined,
along with the encapsulating text. This technique is particularly useful when using a
technique called “Left-Peeling”’. Consider the following script:

MyVar = 'John,Aloysius,Smith’

FirstName = Parse MyVar " ' 'Cut' ; Cut out first name
MidName = Parse MyVar " ' 'Cut' ; Cut out middle name
LastName = MyVar ; Save what's left

This “peels” off fields from the left side of the variable MyVar. It will set the vatiable
FirstName to 'John', the MidName variable to 'Aloysius', and LastName to 'Smith'.

The “Relaxed” Control Setting

The “Relaxed” control setting lets the “To” decapsulator look for text that may not be
there. If it is NOtthere, the “T'o” decapsulator is treated like a null (") decapsulator.

Let us say you are extracting information from the $OutData special variable and some
of the lines you have to parse look like this:

Bob

Fred Smith

Mary Anastasia Jones
John Quincy Publique Sr.

This data is inconsistent, so you cannot predict how many parsing cuts to make. With
the “Relaxed” control setting, this is not a problem.

83

it

o

PARSE-O-MATIC USER MANUAL — DECAPSULATOR
COMMANDS

Consider the following example.

Namel = Parse $OutData " '' 'Cut Relaxed'
Name2 = Parse $OutData " '' 'Cut Relaxed'
Name3 = Parse $OutData " '' 'Cut Relaxed'
Name4 = Parse $OutData " '' 'Cut Relaxed'

Name = Namel /' Name2 /' Name3 '/' Name4 /'
TrimChar Name 'R/'

This would set the Name variable to the following values:

Bob

Fred/Smith
Mary/Anastasia/Jones
John/Quincy/Publique/Sr.

The preceding example could, of course, have been accomplished more easily with the
Change command, but it is included here as a demonstration, not a real-world
application.

84

PARSE-O-MATIC USER MANUAL — LOOKUP COMMANDS

Chapter

Lookup and Database Commands

Overview

The LookupFile and Lookup commands give Parse-O-Matic Scripting simple database
capabilities: you can use a “key” to look up an item of data. For example, a database of
country abbreviations could look up 'US' (the “key”) to find 'United States of America’
(the “data”).

The MassChange command can be used to apply search-and-replace edits to a line of
data, based on the information contained in a Lookup file.

Lookup files can be prepared in a text editor program. You can name them anything
you want, though by convention the file names start with Luf and have a .txt
extension (example: LufCustomers.txt).

The ScanFollow command provides a simple form of lookup capability that does not
involve an external file.

Lookup

Format vl = Lookup v2 t3 [v4]

Example MyVar = Lookup 'Car' ‘MyTable' ; Find 'Car' in
‘MyTable' table

Purpose Looks up a value in a table read in from an external
file

Parameters vl - Variable being set (thisis t he fidat ao)
v2 - Value being sought (this is the
t3 - Table name (as defined by LookupFile)
v4 - Control setting

Controls IgnoreCase/MatchCase

Defaults v4 = 'MatchCase' (v2 must match the table's key field
exactly)

Similar Cmds SetFromFile

Notes Sets $Success ('Y' = v2 was found).

85

fikeyo

PARSE-O-MATIC USER MANUAL — LOOKUP COMMANDS

LookupFile
Format LookupFile t1 v2 [v3 [v4 [v5]]]
Example LookupFile 'MyTable' 'C: \ MyData\ LufMyDatabase.txt' 3 2
Purpose Reads in a table for use with the Lookup command
Parameters t1 - A name for thi s table (used by the Lookup command)
v2 - Name of the file being read in
v3 - Key field number (what you are looking for)
v4 - Data field number (what you find)
v5 i Control setting
Controls Decode/NoDecode
Defaults v3=1
v4d =2
v5 = Decode
Restric tions LookupFile reads the entire table into memory. Thus,
multi - megabyte lookup files may cause problems on some
machines.
(Comments are ignored, SO you can use as many as you
want without affecting performance.)
Notes If the filename (v2) does not speci fy a path,
LookupFile will use the Search Path to look for it.
The sample lookup file LufSample0O1.txt contains comments that explain the

fundamental techniques you will need to define a lookup file.

Here is an example of a lookup file, named ScrSuppliers .txt

; Lookup file for my suppliers, giving supplier number, name, and phone

number
1,"Pinnacle Software","416 - 287-8892"
2,"Fred's Computers","514 - 555-1234"

3,"DigiRamaTech","212 - 555-4321"

86

PARSE-O-MATIC USER MANUAL — LOOKUP COMMANDS

This particular lookup file starts with a comment line. The data lines have three fields.
You could look up the first field (the supplier number) to determine the supplier name
or phone number.

The NoDecode control setting turns off the conversion of encoded text (e.g. $0D and
#13). This is occasionally necessary when using a CSV (Comma Separated Value) file
that does not put quotes around text fields. The default setting (Decode) will decode
the string (see “Untypeable Characters”).

MassChange
Format MassChange v1 t2 [v3]
Example MassChange MyVar 'MyTa ble' 'IgnoreCase’
Purpose Applies every possible change listed in a Lookup file
Parameters vl - The variable being changed
t2 - Table name (as defined by LookupFile)
v3 - Control setting
Controls IgnoreCase/MatchCase
Defaults v3 = 'MatchCase’

Similar Cmd s Change

MassChange is typically used for applying corrections to common typographical errors,
rationalizing address data (e.g. changing "app.' to 'Apt.") or for remapping one character
set to another one.

The sample lookup file LufSample0O1.txt contains comments that explain the
fundamental techniques you will need to perform any of these tasks.

ScanFollow
Format v1 = ScanFollow v2 v3 [v4 [v5]]
Example X = ScanFollow 'C' '/A/B/C/D/E' ; Set variable X to
D
Purpose Returns the next item in a character - delimited list
Parameters vl - Variable being set
v2 - The value being sought in the list
v3 - The list (first character defines the list
delimiter)
v4 - Value to return if v2 is not found or is last in
the list
v5 - Control setting
Cont rols IgnoreCase/MatchCase
Defaults v4 = Null (empty) string
v5 = IgnoreCase
Similar Cmds Lookup

ScanFollow looks up a string in a list then returns the N€Xistring in the list. It can be
used as a simple lookup tool, or to step through a series of strings.

If using ScanFollow as a lookup tool, remember that (unlike the Lookup command),
ScanFollow does not distinguish between “key” and “data” — it simply finds the first
occurrence of the value being sought and returns the next item in the list.

87

PARSE-O-MATIC USER MANUAL — LOOKUP COMMANDS

Advanced Database Connectivity
Parse-O-Matic allows the reading and writing to supported ODBC sources.

This allows you to connect to your existing Microsoft SQL Server or Oracle, or almost
any ODBC compliant data server.

You use the SendToDB, in conjunction with $CfgODBCConnection to send and
receive data to your ODBC configured source.

The website http://www.connectionstrings.com currently offers a number of tips on

specifying connection strings.

SendToDB

Format: SendToDB vl [v2] v3 v4

Example: SendToDB 'select * from customers' ‘c: \hol dingfile.
dataholder resultcode
SendToDB 'update customers set donot contact=1"' "
dataholder resultcode

Purpose:

Parameters: vl - Command or variable containing command to s end to

database

v2 - Filename where results returned from the database
should be saved must not exist)

v3 - Variable to store result set(s)

v4 - Handled Exception Code. Any unhandled exceptions
will stop the script from running

100 - Connection string is empty ($CfgODBCConnect ion is
not defined)

101 - Invalid connection string

200 - Incorrect file name

201 - File already exi sts

If v2 is omitted, result data is not written to the

disk.

Data is exported in separated value format, with the delimiter being used as the one
defined in $CfgDelimiter. That default value is \0

v3 will use up to about 80% of available memory to store any result set. Please clear
out your vatiables if you are going to be processing very large or millions of records,
that do not need to be reused.

88

C

SV

0

http://www.connectionstrings.com/

PARSE-O-MATIC USER MANUAL — CALCULATION COMMANDS

Chapter

Calculation Commands

Calc
Format vl = Calc v2 03 v4
Example MyVar = Calc 3 + 4 ; Set MyVar to 7
Purpose Perform an integer calculation
Parameters vl - Variable being set
v2 - Firstinteger number
03 - Operation
v4 - Second integer number
Similar Cmds CalcReal
Notes All extraneous text (i.e. everything but 0 to 9 and the

minus sign) is removed from the values v2 and v4.
If either v2 or v4 are null, they are interpreted as 0.

The operations used by Calc (and also CalcReal) are as follows:

0000000060800 000000060000D000000608080000006380830020
Operation Meaning Operation Meaning Operation Meaning
0000000060000 0000000060000D000BJ0B0B30000000060083008000080
+ Add * Multiply Highest Pick biggest number
- Subtract / Divide Lowest Pick smallest number
0000000060800 000000060000D0000006080000000060800830020

The Calc command uses integelivision. This means that any remainder is discarded.
Thus, the calculation 10 / 3 will return a value of 3, since 3 goes into 10 three times,
with a remainder of 1 (which is ignored).

The Calc command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic’s integer
range.

89

PARSE-O-MATIC USER MANUAL — CALCULATION COMMANDS

CalcReal
Format vl = CalcReal v2 03 v4 [v5]
Examples MyVar = CalcReal 3.1 * 4.3 ; Set MyVar to 13.33
MyVar = CalcReal 10.0/3.0 5 ; Set MyVar to 3.33333
Purpose Perform a real - number calculation
Parameters vl - Variable being set
v2 - First real number
03 - Operation
v4 - Second real number
v5 - Number of decimal places
Defaults v5=2
Similar Cmds Calc
Notes All extraneous text (i .e. everything but 0 to 9, the
minus sign and the decimal point) is removed from v2
and v4.
If either v2 or v4 are null, they are interpreted as
0.0.

By default, operations with fixed decimal places are
subject to rounding. See the Rounding command for
details.

For a list of operations, see the Calc command.

Real number operations have 18 valid digits across the range (expressed in scientific
notation) of

3.6 x10" 74951to01.1x 1074932

If you are working with very large numbers, it is a good idea to write some
experimental scripts to determine if the accuracy you require can be obtained.

If v5 is set to “Float”, CalcReal will calculate as many decimal places as it possibly can.
Before you do this, however, you should be aware that when computer calculations are
taken to the limit of the software's precision, it can result in inaccuracy.

Dec
Format Dec vl [v2]
Example Dec MyVar 3 ; Subtract 3 from variable MyVar
Purpose Decrements (decreases) an integer number
Parameters vl - Variable being se t
v2 - The amount by which to decrement v1
Defaults v2=1
Similar Cmds Inc
Notes Decrementing with a negative value increases vl

The Dec command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic’s integer
range.

20

PARSE-O-MATIC USER MANUAL — CALCULATION COMMANDS

Inc
Format
Example

Purpose
Parameters

Defaults
Similar Cmds
Notes

Inc v1 [v2]

Inc MyVar 3 ; Add 3 to variable MyVar

Inc MyVar ; Add 1 to variable MyVar

Increments (increases) an integer number

vl - Variable being set

v2 - The amount by which to increment v1

v2=1

Dec

Incrementing with a negative value decreases Vvl

The Inc command can handle very large numbers, but if your calculations take you
beyond 18 digits, you are getting very close to the edge of Parse-O-Matic’s integer

range.

Rounding
Format
Example
Purpose

Parameters
Notes

Rounding c1

Rounding 'Yes'

Turns rounding - up on or off for fixed - place answers
calculated by the CalcReal command

cl - 'Yes'or'No' (‘Yes'=Round -up the answers)
Turning off rounding is not recommended . By default,

rounding -upis on. If you turn it off, the answers are
simply truncated according to the number of fixed

decimal places. If you do this, you should be aware of

the problems inherent i n computer calculation. For
details, see CalcReal.

Fixed-place numbers are rounded-up by adding 5 to the next-lowest position. So 4.56
with one fixed-decimal place is rounded by adding 0.05, yielding 4.61, which truncates
to '4.6'. If the answer is negative, the adjustment is subtracted rather than added, so -
4.56 with one fixed decimal becomes '-4.6".

91

PARSE-O-MATIC USER MANUAL — DATE AND TIME
COMMANDS

Chapter

Date and Time
Commands

Overview

All date-oriented commands that involve calculations (e.g. AddDays and
AddWeekDays) are limited to the years 1900 to 2999. These commands normally
expect to see the year expressed with four digits (e.g. 2009), but if you pass them a two-
digit year they will try to guess the appropriate millennium. That is to say, if the two
digits are in the range 80 to 99, the year will be taken to mean 1980 to 1999.

When using commands that handle date and time, you should be careful that you are
specifying valid values. For example, if you set the hour to 999 the program will
terminate with an explanatory error message.

DateTimeFormat
Format vl = DateTimeFormat v2 v3 v4 v5 v6 v7 v8
Examples DateTime = DateTimeFormat 2008 12 25 17 29 30'Y - ?N- ?D
H:?1?S'
DateOnly = DateTimeFormat 2009 12 25" " "'Y - ?N-?D'
TimeOnly = DateTimeFormat """ 17 29 " '? h:?l &'
Purpose Formats a date or time, or both, into a text string
Parameters v1 = Variable being set
v2 to v4 = Year, Month, Day (all may be set to null if
not used)
v5 to v6 = Hour (24 - hour), Minute, Second (all may be
set to null)
v8 = Date and tim e format codes (explained below)
Controls See fiDate and Ti me Format Codeso

Date and Time Format Codes

Explanations

? Padding position to prefix a zero to a single - digit value
Ante Meridiem or Post Meridiem, in lowercase: am or pm

Ante Me ridiem or Post Meridiem, in uppercase: AM or PM

Day of the month

o >»9

92

PARSE-O-MATIC USER MANUAL — DATE AND TIME
COMMANDS

h Hour of the day (12 - hour clock)
H Hour of the day (24 - hour clock)
| Minute of the hour
m Month of the year (three letters, capitalized)
M Month of the year (three letter S, uppercase)
N Month of the year (numeric)
S Second of the minute (numeric)
t Month of the year (full name, capitalized)
T Month of the year (full name, uppercase)
Y Four - digit year (if input is two digits, 80 to 99 yield 1980 to
1999)
y Two- digit year (if input is four digits, first two digits are
dropped)
Examples
Sample Format Settings Sample Results Comments
'™M ?D ?y' JAN 12 09
'm ?D "?y ?H:?I:?S a' Feb 22 '09 04:01:23 am
'tD,Y, H:?2l A’ July 4, 1981, 2:01 PM
'tD,Y, ?H:?I 28 May 4, 1981, 14:01:02
“?D/?N/?y' 01/02/03 European date
format
"?N/?D/?y' 02/01/03 Date format in USA
'Y - ?N- ?D' 2003-02- 01 IS0 8601
international date
AddDays
Format AddDays v1 v2 v3 v4
Example AddDays MyYear MyMonth MyDay 14
Pur pose Adds the specified number of days to the specified date
Parameters vl to v3 = Year, Month and Day (these must be
variables)
v4 = Number of days to add (if negative, days are
subtracted)
Similar Cmds AddWeekDays
Notes Pl ease see the fOver viarmorednfosmaton i on
about working with date data.
If v4 = 0 then the date is not changed.
AddWeekDays
Format AddWeekDays v1 v2 v3 v4 [t5]
Example AddWeekDays MyYYYY MyMM MyDD 23 'MyHolidays'
Purpose Adds the specified number of weekd ays to the specified
date, optionally skipping holidays as well (if t5 is
specified)
Parameters vl to v3 = Year, Month and Day (these must be
variables)
v4 = Number of days to add (if negative, weekdays are
subtracted)
t5 = Table name defined by the Look upFile command
Defaults If t5 is not specified, AddWeekDays will skip only
Saturdays and Sundays.
Restrictions If a holiday is not listed in the table specified by

93

PARSE-O-MATIC USER MANUAL — DATE AND TIME
COMMANDS

t5, AddWeekDays does not know about it.
Similar Cmds AddDays
Notes Pl ease see t he fisedian fovnor mfdrmation
about working with date data.
If v4 = 0 then the date is moved forward to the next
day that is considered a weekday (i.e. holidays are
also skipped).

Two sample lookup files for holidays are available from Pyroto, Inc. The files are:

LufHolidaysCanada.txt
LufHolidaysUSA.txt

These list the holidays for Canada and the USA. The Canadian file contains extensive
notes on calculating and adding new holidays, and also explains how you can create a
custom holiday file.

We strongly recommend reviewing a holiday lookup file before using it. Some holidays
that are included in the files mentioned above are “commented out” because they are
not celebrated nationally. You can edit a copy of the file (and give it a different name)
by using a text editor such as Windows Notepad.

Note: If you create a lookup file for holidays in a country other than the ones we have
included, we would be most appreciative if you would send us a copy.

DayOfTheWeek
Format vl = DayOfTheWeek v2v 3 v4 [v5]
Example DayName = DayOfTheWeek 2010 12 25
'/Sun/Mon/Tue/Wed/Thu/Fri/Sat'
Purpose Sets v1 to the name of the day of the week
Parameters v1 = Variable being set
v2 to v4 = Year, Month, Day
v5 = List of day names
Defaults v5 ="/1/2/3/4/516/7" (1 = Sunday)
Notes Pl ease see the AOverviewo section for
about working with date data.
If you specify the names of the days of the week (v5), you must list all 7 days (starting
with Sunday). The first character in the list is taken as the delimiter. The usual choice is
the slash character, but a different character could be used, as long as it does not appear
in any of the day names.
Now
Format vl = Now [v2]
Example MyDateTime = Now 'Y - ?N- ?D H:?I?S'
Purpose Sets vl to the current date, or time, or both
Parameters vl = Variable being set
v2 = Date and time format codes (see
Defaults v2 ="'Y/?N/?D' (e.g. 2010/12/25)
Similar Cmds DateTimeFormat
Notes Pl ease see the AOverviewo section for

about worki ng with date data.

94

i Da

mo

PARSE-O-MATIC USER MANUAL — BINARY CONVERSION
COMMANDS

Chapter

Binary Conversion
Commands

Overview
The binary conversion commands deal with transformation of data between a
computer’s representation (e.g. 10110111) and human-readable format (e.g. plain text).

A computer program that uses the ASCII character set will internally represent the
letter A with the number 65 (or, more accurately, the binary value 01000001). This is
not normally an issue, since a program designed to work with ASCII characters will
show you the letter A on the screen. However, if the data is stored in the EBCDIC
character set then the letter A will be represented by a different number. In such case
you may need to convert the EBCDIC representation to the ASCII representation.
Fortunately, this is quite easy to do, and a sample script to perform this conversion is
available in the Pyroto, Inc. Knowledge Base (available via our web site, at
www.Parse-O-Matic.com).

A more difficult problem arises when an input file contains numbers in “raw binary”.
That is to say, numbers in the file do not appear in plain text (e.g. '123"). Rather, they
are represented in a form that is familiar to the computer, so the number 123 might be
represented as 01111011 (hexadecimal $7B).

Further complicating the issue is the fact that computers can represent numbers in
various ways. 123 can also be represented by 0111101100000000. This looks very
similar — after all, it is the same 8 bits as shown previously, followed by 8 zero bits —
but in this case the number is being represented as a 2-byte value instead of a 1-byte
value. The specific representation used by a number can be very important. If you
translate a number using the wrong technique you could end up showing incorrect
values, such as misinterpreting 255 as -1.

A final twist to this problem is that the various representations for numbers do not
always have the same names. The word “byte” always means “8 bits”, but even here
we can run into trouble. A “byte” is sometimes known as an “octet”, and sometimes it

95

PARSE-O-MATIC USER MANUAL — BINARY CONVERSION
COMMANDS

is assumed that one of the bits (the high bit) is not used, or is used for a purpose other
than representing data (i.e. it is a “parity bit”). The term “word” can refer to one byte,
two bytes, four, eight bytes or more, depending on the context.

For this reason, the binary conversion commands do not refer to data representations
using traditional terminology such as “byte”, “word” and “integer”. Rather, they use
“Parse-O-Matic Conversion Codes” to avoid confusion. For example, “I1U” means
“Integer, 1 Byte, Unsigned”. This can only refer to an 8-bit value that holds a value
from 0 to 255. A complete list of the Parse-O-Matic Conversion Codes is shown
below.

Parse-O-Matic Conversion Codes

For the reasons given in the Overview (above), Parse-O-Matic refers to data
representations using “Conversion Codes” rather than standard terms such as “byte”,
“word”, “integer”, “long integer”” and so on.

Here is a list of the conversion codes:

Code Definition Some Conventional Names (see
Note)
Byte, Octet

Shortint, Byte

11U Integer, 1 Byte, Unsigned
11S Integer, 1 Byte, Signed

12U Integer, 2 Bytes, Unsigned Halfword, Word
12S Integer, 2 Bytes, Signed Integer, HalfWord
14U Integer, 4 Bytes, Unsigned DoubleWord, LongWord, Word
14S Integer, 4 Bytes, Signed Integer, Longlnt, Cardinal
18S Integer, 8 Bytes, Signed DoubleWord, Int64, QuadWord
R4S Real, 4 Bytes, Signed Real, Single
R6S Real, 6 Bytes, Signed Real, Real48
R8S Real, 8 Bytes, Signed Double, Real
R10S Real, 10 Bytes, Signed Comp, Extended
R8% Real (4 places), 8 Bytes, Currency
Currency
HEX Hexadecimal text (e.g. 'F0") Hex string
BIN Binary text ('f1111_0000') (Used only in Parse - O Matic)
BIC Binary text compressed Binary string
('11110000")

Note: The conventional names should not be taken too seriously. A

"word", for example, might refer to 1, 2, 4, 8 or more bytes, depending
on the context. Different computers and different computer languages

may use the same term to refer to completely different things.

These codes are not supported by all conversion commands. For example, you cannot
convert from BIC format to 11U format. (In actual conversion applications, that
particular transformation would almost never be required.)

You may occasionally encounter data representations that are not yet supported by
Parse-O-Matic. For example, at the moment we do not translate the COMP data types
used by COBOL programs. If you encounter an unsupported data type you can

96

PARSE-O-MATIC USER MANUAL — BINARY CONVERSION
COMMANDS

inquire about our schedule for adding the feature, and in the meantime you can use the
CalcBinary command to transform the data into a form that iSsupported.

BinaryToText

Format vl = BinaryToText v2 v3 [v4]

Example MyByte = BinaryToText $Data[20] 'l1U'

Purpose Returns the text representation of raw binary data

Parameters vl = Variable being set
v2 = Value being converted
v3= Parse-O-Matic Conversion Co dParse(-G dMatic A
Conversion Codesbo, in the fAOverviewod sec
v4 = Control setting (decimal places for real number
conversions)

Defaults v4 =2

Similar Cmds TextToBinary

Notes Pl ease see t he f Ouienrfovbaekgvaunds e c

details

All computer data is, of course, binary data at some level. The BinaryToText command
is therefore a data format converter. For example, you can transform the value $FF
into the string 255" or -1, depending on the conversion code you use. $FF would
produce 255" if you used the conversion code 'T1U" (Integer, 1 byte, Unsigned) and -1'
if you used 'T1S' (Integer, 1 Byte, Signed).

When we speak of conversion to ‘text’, we are referring to the fact that all variables in
Parse-O-Matic Scripting are expressed as human-readable text. To provide the ability
to develop sctipts quickly, there are no “data types” such as Integer, Real and so on,
and no need to “declare” the variables you are using. So the Parse-O-Matic Engine
decides that ‘1234’ is an integer number if it used in a context where that matters, such
as the Calc command. Similatly, it decides that '1234.56' is a real number if it is fed into
the the CalcReal command.

The BinaryToText command provides you with the ability to translate from “typed”
data that you find in a raw binary input file into the generalized “text” format used by
Parse-O-Matic Scripting. This means that the resulting value can be fed into
Parse-O-Matic commands, ot send to an input file.

The sample script SctPSTMain provides many examples (with explanatory comments)
of data format conversion using the BinaryToText command.

97

PARSE-O-MATIC USER MANUAL — BINARY CONVERSION
COMMANDS

CalcBinary

Format vl = CalcBinary v2 v3 v4

Example ShiftedByte = CalcBinary $Data[20] 'SHL' 1

Purpose Returns the result of a binary operation (e.g. XOR,
SHL)

Parameters v1 = Variable being set
v2 = A value upon which the operation is being
performed
v3 = The name of the operation
v4 = The second value for the operation

Notes Unlike Calc and CalcReal, the operation name (v3) must

be in quotes

The CalcBinary command lets you manipulate data at the bit level. This can be useful
for data format conversions that are not currently supported by the BinaryToText
command. It is also useful for data decryption, CRC generation and so on.

In keeping with Parse-O-Matic’s avoidance of data types (i.e. everything looks like
text), you can perform the CalcBinary operations on data of any length. Thus, you
could perform the ROR operation on a single byte, or hundreds of bytes.

Here is a summary of the operations supported by the CalcBinary command:

Name Description Notes

AND Logical And v2 and v4 must be the same length
NAND Logical Not - And v2 and v4 must be the same length

OR Logical Or v2 and v4 must be the same length

SHL Shif tBits Left v4 specifies number of bits to shift

SHR Shift Bits Right v4 specifies number of bits to shift

XOR Exclusive Or v2 and v4 must be the same length

ROL Rotate Bits Left v4 specifies number of bits to rotate
ROR Rotate Bits Right v4 specifies number of bits to rotate

If you want to perform a simple “NOT” operation (i.e. flipping bits from 0 to 1 and
vice-versa), use the NAND operation, pairing $FF with every byte you want flipped
and $00 with every byte you do NOtwant flipped.

The SHL and SHR commands are similar to the ROL and ROR commands, except
that the latter commands “recycle” the shifted bits to the other end of the data. In the
case of SHL and SHR, on the other hand, bits shifted left or right are lost, with the
“new’” bits being set to 0.

The sample script ScrPSTMain provides many examples (with explanatory comments)
of the CalcBinary command in action.

TextToBinary

Format vl = TextToBinary v2 v3

Example RawlIntegerSigned = TextToBinary '12S’ -1234
Purpose Returns the value encoded as the specified data type
Parameters v1 = Variable being set

v2= Parse-O-Matic Conversion Co dParse(G Matic A

98

PARSE-O-MATIC USER MANUAL — BINARY CONVERSION
COMMANDS

Conversion Codeso, in the fAiOverviewodo sec
v3 = The value being converted

Restrictions Conversion to the BIN, BIC, H EX and R8$ data types is
not supported

Similar Cmds BinaryToText

Notes Pl ease see the fiOverviewo section for ba
details, and the fiBinaryToTexto command
discussion of how Parse - O Matic manages to avoid

requiring data types in scripts.

The TextToBinary command is the flip side of the BinaryToText command. You will
typically use TextToBinary command if you are creating a raw binary output file which
must contain “typed” data such as Signed Integer.

The sample script ScrPSTMain provides many examples (with explanatory comments)
of the TextToBinary command.

29

PARSE-O-MATIC USER MANUAL — REPORTING COMMANDS

Chapter

Reporting Commands

Overview

The log commands (such as LogMsg) send text to the log file, which is typically used to
record non-critical information. If you have a critical message (such as a serious error),
you should use the Stop command.

LogDb

Format LogDb v1 [v2 v3 v4...]

Purpose Same as LogMsg, but separates the fields with vertical
bars

Parameters Same as LogMsg

Similar Cmds OutRuler

You can use the LogDb (“Log Debug”) command while developing or fixing a script.
The vertical bars let you see if the variables have spaces on either side. Once your script
is working propetly, you can do a quick search for “LogDb” to see if you left behind
any debug lines.

LogMsg

Format LogMsg vl [v2 v3 ...]

Example LogMsg ‘Invalid value ' CustNum ' in customer number
field'

Purpose Sends a message to the log file

Parameters vl - Value to send to the log file
v2 - Value (any number of values can be appended)

LogMsgLF

Format LogMsgLF

Purpose Sends a blank line to the log file. The blank line is

ignored if there is already a blank line at that

position. By using LogMsgLF instead of LogMsg("), you
can ensure that the log file does not contain multiple
blank lines in a row.

100

PARSE-O-MATIC USER MANUAL — REPORTING COMMANDS

ShowNote
Format
Example
Purpose

Parameters

Notes

PlaySound
Format
Example
Purpose
Parameters
Notes

ShowNote v1 [v2 v3 v4...]

ShowNote 'Processing database’

Displays an informational message on the user interface
window

vl - The informational message

v2 - Value (any number of values can be appended)
To remove the message, set it to null: ShowNote "

PlaySound v1

ShowNote 'c: \ windows \ media \ ding.wav'
Plays a sound file asynchronously

vl i Path and name of wav file

Wav file must use PCM encoding

101

PARSE-O-MATIC USER MANUAL — FLOW CONTROL

COMMANDS

Chapter

Flow Control Commands

Overview

Parse-O-Matic's flow control commands (such as 1If, Begin, End, Again, Stop) let you
control the order in which the lines of your script are executed. You can, for example,
execute a block of commands only under certain circumstances, or cause a group of
commands to be executed repeatedly (“looping”). You can also define generalized
procedures to save you having to duplicate code.

Again
Format
Examples
Purpose

Parameters

Restrictions

Begin
Format
Example

Purpose

Parameters

Defaults

Restrictions
Similar Cmds
Notes

Again [v1 k2 v3]

See the Begin command

Causes a Begin block to repeat if the comparison is

true (or if no comparison is specified)

vl - Value to be compared

k2 - Comparator

v3 - Value to compare to v1

You cannot combine an Again co mmand with an If command.

Begin [v1 k2 v3]

Begin MyVar = 'XYZ' ; Execute block if MyVar equals

'Xyz'

Marks the start of a conditional block of script code

vl - Value to be compared

k2 - Comparator

v3 - Value to compare to v1

If no comparison is specified, the block always begins.

In such case, it makes no sense to have an Else

command, and it almost invariably means that the block

will end with an Again command.

You cannot comb ine a Begin command with an If command.
If

Comparisons are not case - sensitive, so 'CAT' = 'Cat'
(unless you have altered the CompareCtrl setting).

The Begin command does not setthe $Success variable!
Begin blocks can be nested up to 2 5 levels deep.

102

PARSE-O-MATIC USER MANUAL — FLOW CONTROL
COMMANDS

Here is an example of the Begin command, used with Else and End:

Begin MyVar = 'Cat'

OutEnd 'The animal is feline' ; Executed if MyVar ='Cat'

OutEnd 'In fact, itisa cat' ; Executed if MyVar = 'Cat'
Else

OutEnd 'The anima | is not feline' ; Executed if MyVar is not 'Cat’'
End

Note the use of indentation. Indentation of the conditional code blocks is not
mandatory, but it does make a complicated script much easier to understand. This is
particularly important if a Begin block contains other Begin blocks:

Begin CustCode[1l 3] = 'USA'
OutEnd 'The customer is in the USA'
Begin CustCode[4 5] = 'NY'
OutEnd 'The customer is in New York'
End
Begin CustCode[4 5] = 'TX'
OutEnd 'The customer is in Texas'
End
End

Without the indentation, the logic of the code above would be hard to follow.

Here is an example of the Begin command used in a loop:

Counter =0
Begin

Counter = Counter+

OutEnd 'The counter equals ' Counter
Again Counter #< 10

This would output the numbers from 1 to 10. You could also do it this way:

Counter =0
Begin Counter #< 10

Counter = Counter+

OutEnd 'The counter equals ' Counter
Again

This would output the numbers from 1 to 10.

If you wish, you can put comparisons on both the Begin and Again. Both tests are
repeated on every iteration of the loop.

103

PARSE-O-MATIC USER MANUAL — FLOW CONTROL

COMMANDS

Break

Format Break

Example If CustNum = MaxCustNum Break

Purpose Breaks out of the current Begin/Again block, carrying
on execution at the line following the next Again
command

Similar Cmds Continue

Call

Format Call vl [v2v3 v4..]

Example Call MyProcedure 'Hello!" ; Pass 'Hello!" to
MyProcedure

Purpose Invoke a generalized section of script code passing
information to and receiving results back from the
Procedure
v2 - Value (any number of values can be appended)

Defaults If v2 is not specified, the procedure variable v1 is

Restrictions

assigned a null value.
Calls from procedures into other procedures, which in
turn call other procedures (and so on), can nest up to

50 levels deep.

When you Call a procedure, execution of the script jumps to the first line of the
procedure and continues until the corresponding End statement. The name of the
procedure is also the variable name containing any parameters passed in v2, v3 and so
on (the values are concatenated). Here is a sample script:

Call OutWithExclaim 'Hello, ' 'world' ; Call the procedure

OutEnd 'Glad you could join us!" ; This line is run after the Call

Stop ; Stop running script lines

Pro cedure OutWithExclaim ; Start of the procedure
OutWithExclaim = OutWithExclaim " ; Add an exclamation point

OutEnd OutWithExclaim ; Output
End ; Return to the line after the
Call

This would output the string 'Hello, wotld!' then return to the line following the Call

command.

Continue

Format Continue

Example If Status = 'Ignore' Continue

Purpose Jumps ahead to the Again of the current Begin/Again
block

Similar Cmds Break

Done

Format Done

Purpose Skips the rest of the script (for the current record)

Similar Cmds Stop, NextFile, NextStep

Notes The Done command is usually used with the If command,

or at the end of a Begin/End block.

Here is an example of the Done command:

104

PARSE-O-MATIC USER MANUAL — FLOW CONTROL
COMMANDS
If EmployeeNum <> 1234 Done

In this case, we are checking to see if the variable EmployeeNum is equal to 1234. If it
is not, we skip the remainder of the current processing step.

Else

Format Else

Example See the Begin command

Purpose Def ines the start of the conditional code block that is
executed if the Begin comparison is false.

Restrictions You cannot combine an Else command with an If command.

End

Format End

Examples See the Begin command

Purpose Marks the end of a Begin b lock

Restrictions You cannot combine an End command with an If command.

Exit

Format Exit

Purpose Immediately returns from a Procedure

Restrictions The Exit command can only be used inside a Procedure.

The Exit command is typically used in conjunction with a comparison. You do not
need to include an Exit command in every Procedure; it is used to skip the rest of the
procedure if some condition is met. For example:

Procedure AdjustPhoneNumber
TrimChar PhoneNumber 'A" ; Remove spaces
Change PhoneNumber '/*" -' ; Tidy up format
Change PhoneNumber "."* -' ; Tidy up format
AreaCode = PhoneNumber[1 3]
If AreaCode = '416' Exit
If AreaCode = '905' Exit
PhoneNumber = '1 -'PhoneNumber

End

In this example, the procedure puts '1-' in front of a phone number unless it starts with
416 or 905.

105

PARSE-O-MATIC USER MANUAL — FLOW CONTROL

COMMANDS

If
Format
Examples

Purpose
Parameters

Restrictions

Similar Cmds
Notes

If vi k2 v3 c4

If CustCode = 'AB12' OutEnd 'Mary Smith'

If CustCode = 'CD34' CustAddr = '1234 Happy Lane'
Conditionally performs a command

vl - Value to be compared

k2 - Comparator

v3 - Value to compare to vl

c4 - Command

The If command may not be combined with a command that
defines the start of a code block, such as Begin or

Filelnit.

Begin, Again

The compariso niscase - insensitive, so 'CAT' ='cat'
unless you have altered the CompareCitrl setting.

The If command does not setthe $Success variable!

In deference to the ingrained training of seasoned programmers, you may use the word
“then” after the comparison. Thus, the following command will be accepted:

If x >y then z = "Hello’

This usage is non-standard, however, and is not recommended. The scripting engine
treats the “then” as a variable, but ignores it in this context. Thus, you should never use
a variable named “Then”.

The If command does not have an “Else” option as in most programming languages.
To execute 2 command when the If condition is false, use the Otherwise command.
Alternatively, you can use the Begin command with an Else section.

Otherwise
Format
Example

Purpose

Parameters
Restrictions

Similar Cmds

Procedure
Format
Example
Purpose

Parameters

Restrictions

Otherwise c1

If Animal = 'Cat' Type = 'Feline’ ; The initial If
command

Otherwise Type ='Non - feline'
false

Executes an alternative command when the If comparison
is false

cl - Command

The Otherwise command must follow immediately after an
If.

The Otherwise command may not be combined with a
command that defines the start of a code block, such as
Begin or Filelnit.

Else

; Action taken if

Proce dure v1

Procedure MyCode

Defines the start of a generalized section of script
code, which is terminated with the End command

vl - The name of the Procedure (must be a simple
variable)

Recursive procedures (i.e. proce dures that call

106

PARSE-O-MATIC USER MANUAL — FLOW CONTROL
COMMANDS

themselves) are not formally supported and their use is
not recommended.

Notes See the Call command for additional details about
procedures.

As the script is being run, any Procedure sections are ignored when encountered; they
are only executed when explicitly invoked by Call. Procedures can go anywhere except
within conditional blocks such as Begin/End, FileInit/End and so on. Procedures ate
usually placed together at the end of the script.

Stop

Format Stop [v1]

Example If Cust Num[1] ='X' Stop 'Invalid customer humber'

Purpose Terminates further processing

Parameters vl - Optional pop - up message

Similar Cmds Done, NextStep

Notes If v1 is included, a pop - up message is displayed. In
such case, the Stop is consi dendafd
processing and the script - enabled application should

proceed accordingly.

107

=1

PARSE-O-MATIC USER MANUAL — STEP CONTROL

Step Control

Overview

A simple script runs from top to bottom each time a record is sent to it. But how can
you initialize variables before processing starts? How can you output a grand total after
all the records have been processed?

These issues and others are addressed by the step control commands.

When processing files, Parse-O-Matic performs a series of steps:

Tasklnit Executes before data is read from the first input file
Filelnit Executes before data is read from the current input file

Main Executes once for each record sent to the script

FileDone Executes after the last data is read from the current input
file

TaskDone Executes after the last data is rea d from the last input
file

If you are only processing a single file (i.e. you are not using wildcards to process
multiple input files), there is little to distinguish Tasklnit and TaskDone from Filelnit
and FileDone.

Using Step Control
Except for the Main step, each step appears inside a conditional block, as in this
example:

Tasklnit ; Start of the TaskInit step
OutEnd 'Customer Count Report' ; Report header
OutEnd ' -------mmmmmmmeeeee ' ; Report header
End ; End of the TaskInit step
Filelnit ; Start of the Filelnit step
OutEnd 'Input file: * $ActuallFN ; Output the file name
NumlinpFiles = NumInpFiles+ ; Count this input file
End ; End of the Filelnit step
CustCount = CustCount+ ; Main step: count record
TaskDone ; Start of the TaskDone step
OutNull ; Output a blank line

OutEnd 'Number of input files: * NuminpFiles ; Output statistics
OutEnd 'Number of customers: ' CustCount ; Output statistics
End ; End of the TaskDone step

In the example given above, the conditional code for the report header was placed in
Tasklnit so that the script will output it only once, even if you are processing multiple
input files.

The conditional steps are optional. For example, you do not have to include FileInit in
your sctipt.

The conditional steps can appear almost anywhere in your script (though not within
another conditional block).

108

PARSE-O-MATIC USER MANUAL — STEP CONTROL

Filelnit and FileDone
The Filelnit section is executed before each input file is processed. The FileDone
section is executed after each input file is processed.

You cannot combine the Filelnit or FileDone commands with the If command.

Taskinit and TaskDone

The TaskInit section is executed before data is read from the firStinput file. The
TaskDone section is executed after the laStrecord is read from the lastinput file and
has been processed by the Main step.

You cannot combine the Tasklnit or TaskDone commands with the If command.

NextStep
The NextStep command can be used to jump out of a step (such as Filelnit or Main)
and proceed to the next step.

For example, if your Main step has already located the information you are seeking,
there is no reason to continue reading the input file. In such case, you can execute a
NextStep command to ignore the rest of the input file and proceed immediately to
FileDone, as in the following example.

CustNum = $OutData[1 6] ; Main step: Get customer number
PhoneNum = $OutData[60 70] ; Main step: Get the phone number
If CustNum = '314159' NextStep ; Main step: Found the customer?
FileDone ; Start of the FileDone step
OutEnd 'Phone Number ="' PhoneNum ; Output the information we sought
End ; End of the FileDone step

NextStep should not be confused with the Stop command, which causes processing to
cease entirely.

NextStep is also different from Done, which skips the rest of the script and then (if
used in the Main step) proceeds to process the next record from the input file. The
Done command can, however, be used within a conditional step block (such as
FileInit) to skip the rest of that step; in such case it will behave the same way as
NextStep.

109

PARSE-O-MATIC USER MANUAL — STEP CONTROL

NextFile

The NextFile command jumps out of the Filelnit, Main or FileDone step without
processing any of the remaining file-oriented steps. For example, if you execute
NextFile in the Filelnit step you will skip the Main and FileDone steps. (NextFile
cannot be used in the TaskInit or TaskDone steps, since these steps are not dealing
with a particular file.)

NextFile is used when an input file is rejected for some reason. It may have a serious
formatting error, or (if you are using wildcards) it might not precisely match the kind of
file name you are looking for.

If you are indeed using wildcards, NextFile will proceed to the Filelnit step for the next
input file. If your script is working on the last input file, NextFile will cause the script to
move to the TaskDone step.

Here is an example of NextFile, as it might be used in the Main step:

Begin $Data[1 10] <> 'EMPLOYEE #'
LogMsg $ActuallFN ' is not formatted correctly’
HadError = "Y'
NextFile

End

In this case, the file did not contain the data we expected, so we log the error and move
on to the next input file. In such case, it is a good idea to set a flag (HadError in this
case) so that the TaskDone step can issue a warning:

TaskDone
If HadError = 'Y' Stop 'One or more errors were detected. ' >>
'Please consult the log file.'
End

Simply logging errors is no guarantee that the user will be aware that there was a
problem, so we point out that the log does indeed contain some important
information.

110

PARSE-O-MATIC USER MANUAL — MANUAL READ COMMANDS

Chapter

Manual Read Commands

Overview

Parse-O-Matic reads a file from top to bottom and feed the input file data to the script
one record at a time. In most cases there is no need for Parse-O-Matic to behave
differently. However, occasionally a parsing challenge arises in which the script writer
needs to go backwards and forwards in a file, or needs to read in new data according to
varying criteria. The Manual Read commands address these requirements.

RecLenZero Scripts

Manual Read commands are essential is when your script is figuring out for itself how
many characters to get for each record. In such case, your script must configure the
input file as binary and specify a record length of zero. This is known as a RecLenZero
script. Here is a sample script.

Config
$CfglnpFileType = 'Binary'
$CfgRecLen =0
End
$Data = ReadFor 100 'Relaxed'
OutEnd $Data

With a record length of zero, the Parse-O-Matic application will never read a single
byte from the input file. Thus, the first line of the Main step in a RecLenZero script is
typically a ReadFor or ReadUntil command. These commands and others are
described below.

Using Manual Read for Standard Input File Types

Most Manual Read commands work in the standard input modes (such as TextCR)
and one of them (ReadNext) does not do anything in a Recl.enZero script (i.e. when
$CfgRecLen is set to zero).

111

PARSE-O-MATIC USER MANUAL — MANUAL READ COMMANDS

Bookmark
Format
Example
Purpose

Parameters

Similar Cmds
Notes

ReadEOF
Format
Example
Purpose

Similar Cmds
Notes

Bookmark v1 v2

Bookmark 'Save' ‘MyBookmark'

Remembers or returns to the current position in the

input file

vl - 'Save'or 'Goto’

v2 - The name of the bookmark

Rewind

The number of bookmarks you can save is limited only by
your computer's memory.

ReadEOF

TestEOF = ReadEOF

Tests if the file pointer is positioned at the end of
the input file

The $EndOfData variable

Returns "Y' if at end of file, 'N' otherwise.

Since ReadEOF is a function, it cannot be used in a comparison command such as If
or Begin. You can use the special variable $EndOfData for that purpose, or you can
save the value of ReadEOF in a variable for later use. Both methods are useful for
determining if the input file contains any more data.

ReadFor
Format
Example
Purpose
Parameters

Controls
Defaults
Similar Cmds
Notes

ReadNext
Format
Purpose
Similar Cmds

vl = ReadFor v2 [v3]

MyVar = ReadFor 1000 'Relaxed'

Reads the specified number of bytes from the input file
vl - Variable being set

v2 - Number of bytes to read

v3 - Control setting

Strict/Relaxed

v3 = 'Strict'

ReadUntil, Rewind

ReadFor does not update Data or PrevData.

If v2 is zero or negative, v1 is set to null.

If v3 is 'Relaxed’, no error message is generated if
you attempt to read past the end of the file.

ReadNext
Moves to the next record in the input file
ReadUntil, ReadFor

112

PARSE-O-MATIC USER MANUAL — MANUAL READ COMMANDS

The ReadNext command updates $Data with the next record from the input file. This
is helpful if you know for certain what kind of data will be in the next record and wish
to process it at the current point in the script.

ReadNext cannot be used in RecLenZero scripts, since when $CfgRecLen is set to
zero Parse-O-Matic does not know how you are defining a “record”. In such case you
should use 2 command such as ReadUntil or ReadFor.

113

PARSE-O-MATIC USER MANUAL — MANUAL READ COMMANDS

ReadUntil
Format
Example
Purpose

Parameters

Controls
Defaults
Similar Cmds
Notes

Rewind
Format
Example
Purpose

Parameters

Similar Cmds

vl = ReadUntil v2 [v3]

MyData = ReadUntil #13#10 'Relaxed’

Reads from the input file until the specified string is
found

vl - Variable being set

v2 - String to search for

v3 = Control setti ngs

Include/Exclude; Strict/Relaxed

v3 = 'Exclude Strict'

ReadFor

In Include mode, the string being sought is included in
v1.

If v2 is null, the program will terminate with an error
message.

If v3 is 'Relaxed’, no err or message is generated if
you attempt to read past the end of the file.

Rewind v1

Rewind 100

Moves the input file's pointer back by the specified
number of bytes

vl - Number of bytes to move backward

file)

Bookmark, ReadFor

s (0 = start of

Rewind ignores the sign of v1, so 123 and -123 are treated the same way. If you wish to
move forwarth the file, use the ReadFor command.

Rewind resets the $EndOfData condition, but this needs to be done before the script
ends or else you will move on to the FileDone step.

114

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

Chapter

The Config Section

Overview

The Config (short for “Configuration”) section lets your script adjust how the
underlying Parse-O-Matic application looks and behaves. You can, for example, alter
the captions and hints on the optional input boxes.

Sample Script
By convention, the Config section appears at the beginning of your script. Here is a
sample script:

Config
$CfgEnableOptionX = 'N'
$CfgEnableOptionY = 'N'
$CfgEnable OptionZ ="Y"

$CfgCaptionZ ='&CustNum'
$CfgHintZ ='Enter the 5 - digit customer number here'
End

If $OutData[l 5] <> $OptionZ Done
OutEnd $OutData

For the standard Parse-O-Matic user interface, this would disable the first two optional
input boxes, leaving only the third one (known generically as OptionZ). It would be
given the caption “CustNum”, with a hotkey of Alt-C (as indicated by the ampersand
preceding the C in '&CustNum).

Execution of the Config Section
The Config section is run when a script is loaded, and when you press F5. It is also run
if the application notices that the script has been changed.

The Config section is run again when the script is run, just before the Tasklnit step.

Whenever the Config section is run, the entire script is checked for syntax errors.

115

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

Commands Available in Config
Since the Config section deals with overall processing parameters, you should NOtuse it
to initialize variables — that should be done in the TasklInit step.

In most cases, you will simply assign values to $Cfg variables. In addition to this,
though, you can use the following commands:

Begin, Else, End, If, Otherwise, Stop, NextStep

These let your Config section make certain decisions based on other factors (for
example: whether or not $TestMode = 'Y"). You cannot read input (because there is
none within the Config section), nor can you generate output.

The $Cfg Variables
The settings you make in the Config section are performed by assigning a value to one
of the special variables starting with the characters $Cfg. These are described below.

Optional Input Boxes

The standard Parse-O-Matic interface has three combo boxes known generically as
OptionX, OptionY and OptionZ.

You can alter the characteristics of these input boxes with the following $Cfg variables:

$CfgCaptionX, $CfgCaptionY and $CfgCaptionZ set the caption. You can include an
ampersand in the value to define a hotkey. For example:

$CfeCaptionY = '&PhoneNum'

This will alter the caption for the OptionY input box to “PhoneNum”, with a hotkey
of Alt-P. You should test your script to ensure that the hotkey is not already used by
another control, and that the caption fits in the space provided.

$CtgEnableOptionX, $CfgEnableOptionY and $CfgEnableOptionZ turn on or off
the optional input boxes. If an input box is turned off, it will be “greyed-out” and will
contain the string “(Not used by this application)”. For example:

$CtgEnableOptionX = 'N'
$CtgEnableOptionY ="Y"
$CtgEnableOptionZ = 'N'
This would turn off all optional input boxes except OptionY.

$CtgHintX, $CfgHintY and $CfgHintZ provide a “hover hint”. This is a short phrase
that appears when the user pauses over the input box with the mouse cursor.

116

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

File Names

The standard Parse-O-Matic interface has an input box for the Input File name and
one for the Output File name. Both of these have default values, which are set by the
following variables:

$CfgDefaultlFN Default input file name
$CfgDefaultOFN Default output file name

If you clear (i.e. leave empty) the Input File input box and then exit it (e.g. by pressing
Tab), the program fills in the input file name ThingsToDo.txt — one of the
sample files included in the Parse-O-Matic package.

You can change these defaults with $CfgDefaultIFN and $CfgDefaultOFN.

Note, however, that when a script is loaded these default names do not automatically
override the file names already in the input boxes. These $Cfg variables simply provide
the end user with a quick way to enter a commonly-used file name. If the default file
name is quite long (for example, if it is located in a sub-sub-sub-directory), this can save
the end user a lot of typing.

Two special file names are recognized by Parse-O-Matic: Clipboard and None.
Clipboard takes input from (or sends output to) the Windows text clipboard.
None means precisely what its name implies: if you take input from None, you'll get
no data (except the word “None”); if you send output to None, it disappears.

Filename may also be a URL, such ‘http://yourdomain/indexhtml’ or
“ftp:/ /yourdomain/file.zip’

File Formats

The format of the input and output files can be altered from the default setting (plain
text) with the following $Cfg variables:

$CfginpFileType Input file format (examples: 'Text', '‘Binary’',
‘Delimited' ,'HTMLDe limited')
$CfgOutFileType Output file format
$CfgRecLen Record length for Binary files
$CfgDelimiter Record - ending delimiter character for Delimited files

These settings are described below.

INPUT FILE FORMAT

If you do not specify a setting for $CfglnpFileType, it is generally assumed to be "Text'
(unless the undetlying Parse-O-Matic application has a different default).

117

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

The Text type can read standard Windows-style text files (i.e. each line ends with the
carriage return and linefeed characters: decimal #13#10; hex $0D$0A) or Unix-style
text files (where each line ends with the linefeed character).

Here are the supported values for §CtglnputFileType:

Text' Windows - style or Unix - style text files
‘TextLF' Unix - style text files on ly

"TextCR' Macintosh - style text files

'‘Delimited’ Records terminated with a specific character
'‘Binary' Fixed -record - length file or RecLenZero script

'HTMLDelimited' HTML and/or XML Files

These file types are described below.

Text Files

The three text file formats (Text, TextLF and TextCR) try to deal gracefully with a
certain amount of variation. For example, TextCR will ignore any linefeed characters,
while TextLLF will ignore any carriage return characters. If for some reason you wish to
retain these characters, you can use the Delimited file format (described below).

Delimited Files

If you set $CfglnpFileType to 'Delimited’, you must also specify the delimiter character
that ends each record (with the possible exception of the last one). For example, you
could process Macintosh-style text files by using the following technique instead of the
TextCR format:

Config
$CfgInpFileType = 'Delimited’
$CfgDelimiter = $0D

End

This will read records that end with a carriage return character. The delimiter character
is not included in the result.

Multi-character delimiters are not supported, but in most cases you can simply parse
out the excess characters. For example, if you read a standard Windows-style text file as
a Delimited type, looking only for the linefeed ($0A), each record would have a
sputious carriage return ($0D) at the end which is easily removed with the TrimChar
command.

HTML/HTTPS/FTP for Input files
In HTMILDelimited mode, each record is delimited as an html or xml element.

$CtelnpFileType = 'HTMLDelimited'

118

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

This delimited feature allows you to more easily step through an HTML file.

HTMIDelimited iterates through the HTML file, but rather than defining a line as one
ending in CRLF, it would consider each HTML/XML element as a line. So if the page
contained:

<pre>this is

simple text that | have written.</pre>

Each record would be:
<pre>

this is simple

text that | have written.

</pre>

In the solution explorer, you may add Add Utl as Input File, by right-mouse clicking
on the Input Files node. This also allows you to add website URLs as input files.
HTTP, HTTPS and FTP, amongst others, are support protocols.

Binary Files

If you set $CfglnpFileType to 'Binary', you must also specify a record length via the
$CfgReclen variable.

A value of 0 (zero) denotes a ReclenZero script: your script will handle all reading with
commands such as Bookmark, ReadFor, ReadNext, ReadUntil and so on.

A positive integer value means that you are reading records of fixed length. In a fixed-
record-length file, all records (with the possible exception of the last one) are exactly as
many bytes as you specify in $CfgRecLen. For example:

Config
$CfgInpFileType = 'Binary'
$CfgRecLen =80

End

This will read records that are 80 characters long. In principle you can read records that
are several billion characters long, though in practise this might create memory issues.

119

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

You should never set $CfgRecLen to a negative number as this currently has no
meaning to Parse-O-Matic.

OUTPUT FILE FORMAT

Since scripts can control output precisely (using the Output command), your output
file can adopt any format you wish. Thus, the $CtgOutFileType variable is used for
documentation purposes only. For example, it is displayed when you view a Help file
for a script.

For the sake of consistency the value of $CfgOutFileType is checked against a list of
permissible file types (Text, TextLF, Delimited and Binary). If you are outputting a
proprietary format (such as might be natively supported by a database or spreadsheet),
it is best to set $CfgOutFileType to 'Binary'.

Documentation

When you create a script, it is a good idea to also create a Help file to go with it.
Parse-O-Matic recognizes that a Help file is present when a file exists with the same
name as the script, but with the string “Help - ” in front of the name. Thus, if you
created a script named:

FixData. pscr

then the corresponding Help file would be named:

Help - ScrFixData.txt

Once you've prepared the Help file, you can then set the following values in your
script's Config section:

Variable Name Explanation
$CfgCopyright Copyright notice (e.g. 'Copyright (C) 200 8 by WhizzCa')
$CfgVersion The version of the script (e.g. '1.00.00;
$CfgProgrammer The name of the primary programmer of the script
$Cfg Email Email address to contact the people who wrote the
script
$CfgLicense Terms of use d you can append several strings with the

continuation convention (the >> characters) to create a
multi - line explanation.

When the Help file is displayed by the application, these items will be added to the end
(provided you assigned them a value).

120

PARSE-O-MATIC USER MANUAL — THE CONFIG SECTION

ODBC Support (Read/Write)
You can read and write from a database that you have access to, as long as it supports

simple ODBC connectivity.

Use the $CfgODBCConnection variable to set your connection.

Remember that you will need to match the connection you set in your script file, with
the connection you created with your ODBC Connection Manager found in your
Windows Administration folder, off of your Control Panel.

All connections to your database, via use of the SendToDB script command will use
the information you supplied in the $CfgODBCConnection variable.

121

PARSE-O-MATIC USER MANUAL — COMMAND LINE
PARAMETERS

Chapter

Command Prompt &
Unattended Operation

Command Line Parameters

Parse-O-Matic Business and Enterprise Editions support launching Parse-O-Matic
with command-line parameters.

This can be useful if you wish to more easily launch a solution for a user via a shortcut
or allowing for unattended operation.

To call Parse-O-Matic from the command line (e.g. in a batch file, a Windows shortcut,
or a task scheduler), the following format is used to specify the input and output files:

POM /I EN="Input.txt" /O FN="Output.txt"

You can also specify the contents of the three option boxes:

/ OPX="OptionX data goes here"
/ OPY="OptionY data goes here"
/ OFZ="OptionZ data goes here"

To specify a sctipt file, use /SFN= as in this example:

/S FN="Sample01. pscr "

For a general overview of command line parameters, start up Parse-O-Matic as
follows:

POM /?

This displays a window which summarizes the command-line options, including the
parameters requited to start parsing automatically (/RUN) and control program

122

PARSE-O-MATIC USER MANUAL — COMMAND LINE
PARAMETERS

termination (e.g. /CLS). The window is also displayed if your command line contains
an option that Parse-O-Matic does not recognize.

Full List of Command-Line Switches:

/SOL=<solution file name> Ignored by deployables
/CMD=<command line file>

/SFN=<Script File Name>

/IFN=<Input File Name>

/OFN=<Output File Name>

/ISFN=<Support File Name>

/LFN=<L og File Name>

/HFN=<Help File Name>

/RUN=y|N Click Start button?
/DAP=y|N Display after processing?
/APP=y|N Append to output file?
/TST=y|N Test mode?

/CLS=y|N|a Close after processing?
/OPX=<value> Option X

/OPY=<value> Option Y

/OPZ=<value> Option Z

Format of a Command Line File
A command-line file allows the specification of parameters for every Project in a
Solution. The format is as follows:

; This is a comment
PROJECT=<Project Name>
Parameter String
Parameter String
Parameter String
PROJECT=<Project Name>
Parameter String
Parameter String

Parameter String

If a Project is not found in the command-line file, the values from the ppro file are
used. If a project is found, but one of the settings is missing, we use the setting from
the ppro file.

The /SOL parameter is ignored by deployables, even if it is found in a command-line
file.

Any command-line switch can also be used on the command line directly. If that is
done, it applies to the first Project only.

If the command-line contains /? then a Help window is displayed, and all other
switches are ignored.

123

PARSE-O-MATIC USER MANUAL — COMMAND LINE
PARAMETERS

/CLS=A means “Close after processing always, even if there was an etror”. In this
mode, pop-up error messages are suppressed.

/TST=Y sets the $TestMode special variable to 'Y".

124

PARSE-O-MATIC USER MANUAL — BATCH FILES

Batch Files

Introduction

When calling Parse-O-Matic from a batch file, you must use the Windows START
command with the /WAIT option so that Parse-O-Matic can complete processing
before execution moves to the next line in the batch file.

If the batch file is running unattended, you should also feed Parse-O-Matic the
following parameters:

00909:¢
/RUN Run (i.e. start) processing immediately

ICLS Close the program after exec ution, even if there is an error
0030323:¢

Thus, a batch file line that calls Parse-O-Matic would contain the items exemplified
below (line breaks and comments inserted for clarity only):

00000 0DBB009

START The Windows START command
IWAIT Await completion
"C: \ Program Files \ Pyroto \ Parse - O- Matic \ POM.exe" Invo ke the program
/IFN= "C: \ My Input \ Input file .dat" Input file or wildcard mask
/OFN="C: \ My Output \ Output.txt" Output file
/S OL="C:\ Program Files \ Pyroto \ Parse - O Matic \ Solutons \My Sol uti on. psol o
/R UN="Y" Start processing
/CLS ="Y" End afterwards

0000000000000000000000000000000000830000000000000203:¢

Note the use of quotes — these are mandatory if a parameter contains a space.

Please note that the above example is broken up onto different lines. Below is how it
would actually would look like if you opened your batch file in Notepad with
WordWrap set to True.

START /WAIT "C: \ Program Files \ Pyroto \ Parse - O- Matic \ POM.exe" /IFN="C: \ My
Input \ Inputfile.dat" /OFN="C: \ My Output \ Output.txt" /SOL="C: \ Program
Files \ Pyroto \ Parse - O Matic \ Solutions \ MySolution.psol " /RUN="Y" /CLS="Y"

The Error Reporting File

If a serious error occurs dutring processing, Parse-O-Matic creates a file named
POMPT Error.txt in the same directory as the Solution file. The file is plain text
and contains information about the error. You can view the Error Reporting File using
the Support Files input box of the Parsing Parameters window; it will be listed in the
drop-down list.

If no error occurs, the file is NOPpresent after processing is complete.

125

PARSE-O-MATIC USER MANUAL — BATCH FILES

If you are using Parse-O-Matic in a batch file, you can check to see if processing
worked by using the IFF EXIST test, as in this example:

@EHO OFF

C:

CD "\ Program Files \ Pyroto \ Parse - O Matic \"
START /WAIT POM.exe /I FN='C: \ Mylnput \ XYZ.TXT"/R UN="Y" /CLS="Y"
IF EXIST POMPT - Error.txt GOTO ERROR

GOTO OKAY

:ERROR

ECHO An error occurred!

GOTO DONE

:OKAY

ECHO Everything was fin e!

:DONE

ECHO Processing completed

Note that the /CA parameter suppresses pop-up error messages, so if you use it in
your batch file, it is up to your batch file to watch for the error file and then determine
what to do if an etror (such as "File not found") occurs.

The Log File

In addition to the Error Reporting File, Parse-O-Matic also creates a log file (named
POMPT-Log.txt). Parse-O-Matic uses the log file to record the date and time when
processing started and ended. It also uses the log file to report anything that is slightly
unusual but not a serious problem.

You can view the Log File using the Support Files input box of the Parsing Parameters
window; it will be listed in the drop-down list.

126

PARSE-O-MATIC USER MANUAL — UNATTENDED OPERATION

Unattended Operation

If you require processing without human intervention, you can set up the Windows
Task Scheduler to run an appropriate batch file periodically.

The batch file can check to see if a particular input file (or a particular file wildcard)
exists in a particular folder. If so, the batch file would then invoke the parsing
application. After a successful run, the batch file would either move or rename the
input file. (Deleting the input file is not recommended, unless you have another copy
elsewhere.)

Here is an example of an appropriate batch file, which invokes Parse-O-Matic.

@ECHO OFF

IF NOT EXIST "C: \ Mylnput \ *.dat" GOTO QUIT

ECHO Start of processing

C:

CD "\ Program Files \ Pyroto \ Parse - O Matic "

START /WAIT POM.exe /I FN="C: \ Mylnput \ file .dat"
/OFN="C: \ Output \ Output.txt" (line continues)

(line continues) /S OL="ProcessDat a. psol "/ OPX=""/OPY= "™/ OFZ=""

/R UN="Y" /CLS="Y"

IF EXIST POMPT - Error.txt GOTO ERROR

CD "\ Mylnput"

RENAME "*.dat" "*.old"

GOTO DONE
:ERROR

ECHO An error occurred!

PAUSE

GOTO QUIT
:DONE

ECHO Processing c ompleted
:QUIT

In order for this technique to work reliably, the batch file must be called with a greater
frequency than an input file is likely to appear. For example, if a new input file can
show up in as little as 20 minutes, it would be a good idea to call the batch file every 15
minutes. If you do not take this precaution, it is possible that an input file will show up
just as you finish parsing, which means it would get renamed and would not be
processed.

For this reason, it is not feasible to process input files that atrive every few seconds,
unless you have an exceptionally fast machine that does not experience unexpected
delays (such as automatic updates of the operating system, people accessing its hard
disk from the network, and so on).

127

PARSE-O-MATIC USER MANUAL — UNATTENDED OPERATION

If the batch file is running in a Veryinattended fashion (i.e. it handles countless arrivals
of new files, but people rarely check the machine), you should not include the PAUSE
command in the batch file, as this could cause the screen to fill up with open windows.

128

PARSE-O-MATIC USER MANUAL — MULTI-USER OPERATION

Multi-User Operation

Technical Issues

Parse-O-Matic is designed primarily for use in a Singl@seénvironment. Problems can
arise if multiple users attempt to use the same copy. Parse-O-Matic script applications
do not explicitly detect multi-user “collisions”.

When using Parse-O-Matic in a multi-user environment, each user should have their
own copy. Ideally, each copy should be located on the uset's local machine.

129

PARSE-O-MATIC USER MANUAL — LICENSE & LEGAL
ISSUES

Chapter

License & Legal Issues

Free and Basic Editions

Pyroto, Inc. licenses the Parse-O-Matic Free Edition and Parse-O-Matic Basic Edition
according to “concurrent usage” rather than by machine or by person. Thus, if you
have a “single concurrent user license” (sometimes referred to simply as a “single user
license”) you can install a copy of the product on your machine at work, and yet
another on your laptop that you use at home (depending on your own company’s
internal policies, of course). You can use the same registration code on both copies.

You must be able to ensure that only one installed copy can be in use at any one time.
If this cannot be guaranteed, you must purchase additional licenses.

Business and Enterprise Editions

The licensing of Parse-O-Matic Business and Enterprise Editions are on a single-user
basis. That is to say that a separate license is required for each Parse-O-Matic that is
installed on a PC instance. For example, if you need to install Parse-O-Matic on six
PCs, or six Virtual Machines, then you need to purchase six licenses. Site licenses and
company-wide licenses are available. Please contact a sales representative for more
information, or our website at http://www.parseomatic.com

Scripts

Any scripts and accompanying files you write belong to you (or, in some cases, your
company). You do not need our permission to distribute them.

You cannot, however, distribute the supporting Parse-O-Matic application unless you
have purchased a distributor license from us. Parse-O-Matic Free Edition is
available in a freeware version, but some others (such as custom-designed parsing
applications) may not be distributed without prior written permission from Pyroto, Inc.

Deployables
Deployables created as part of Parse-O-Matic Enterprise Edition may only be
distributed internally to the license holder. If you need to deploy stand-alone

130

http://www.parseomatic.com/

PARSE-O-MATIC USER MANUAL — LICENSE & LEGAL
ISSUES

Parse-O-Matic solutions to other companies or to customers, you must purchase
additional licenses from Pyroto, Inc.

Deployables can be distributed to multiple PC’s within your organization. This can
greatly reduce the number of licenses required since a single Parse-O-Matic Enterprise
Edition can create stand-alone deployables for hundreds of your internal users.

131

PARSE-O-MATIC USER MANUAL — SCRAMBLING

Chapter

Security

Encryption

Overview

Scripts can be protected from alteration and execution by “encrypting” them. In this
form they cannot be viewed from within any Parse-O-Matic application, unless the
proper password is entered.

Also, scripts that have been encrypted will only run on the installed instance of Parse-
O-Matic that encrypted them.

An encrypted script can be loaded into a text editor, but it will look like random
characters. Alteration of even one of the characters will typically result in a script that
either does not compile, or does not function correctly.

Limitations

Encrypting is not designed to protect confidential data. The scrambling algorithm is
sufficiently complex that most people will not be able to decode the file. However, one
person is 10,000 certainly has the skills to do this. Such wizards can usually solve this
kind of puzzle in under an hour.

Encrypting cannot prevent the duplication of the essential functions of a script. By
deliberately introducing errors, the end-user could gradually gain knowledge of the
contents of the script. This approach is, of course, quite labor-intensive; it would
probably be easier to rewrite the script from scratch.

Only scripts can be protected by encryption. Encrypting is not implemented for files
accessed via the LookupFile or SetFromFile commands.

132

PARSE-O-MATIC USER MANUAL — SCRAMBLING

Encrypting a Script

To scramble a script, right-mouse click the script in the Solution Explorer and select
the Encrypt option. You will be prompted for an encryption code, which must be at
least 6 characters long, and is case sensitive.

After encrypting, a copy of the original, unscrambled script can be found in a file with
the same root name, but with a .bak extension. Thus, if you scramble a script named
MyScript. pscr the backup copy will be available in the MyScript.bak file. If
the end-user is using your machine, it may be appropriate to delete the .bak file.

Turning off Encryption
To no longer have your script file encrypted, Right-Mouse Click the script in your
Solution Explorer. You will be prompted for the encryption code.

If the encryption code is correct, the script is no longer encrypted. If you type the
encryption code incorrectly, you can try again — up to 50 times. If, after 50 attempts,
you still have not entered the correct code, you must close down the program and start

it up again.

Security Analysis

A relatively unsophisticated keyboard-and-mouse macro routine could try out about
150 encryption codes per minute. Thus, if your encryption code is 6 characters long
and contains only lowercase letters, then the average time to obtain the scrambling
code can be calculated as follows:

2676 /150 / 525600 / 2 = 1.96 years
That is to say:

NumberOfPossibleCharacters © CharactersInCode / CodesPerMinute /
MinutesInAYear / 2

This assumes that the person knows the number of characters in the code and the
number of possible characters that it uses. But even with these advantages this is not a
feasible technique for obtaining the encryption code.

There are, however, more sophisticated approaches. A highly skilled computer expert
could probably obtain the scrambling code within an hour or so. Of course, somebody
with that kind of ability would be able to write their own script with much less effort!

133

PARSE-O-MATIC USER MANUAL — SCRAMBLING

Index

$Cfg Variables, 116
AddDays, 93
AddWeekDays, 93
Again, 102
AlphaNumPatt, 64
Begin, 102
BinaryToText, 97
Bookmark, 112
Break, 104

Calc, 89
CalcBinary, 98
CalcReal, 90

Call, 104

Change, 47
ChangeCase, 48
Cols, 67
CompareCitrl, 65
Continue, 104
DateTimeFormat, 92
DayOfTheWeek, 94
Dec, 90

Done, 104

Else, 105

End, 105

Equals, 43

Exit, 105
FileDone, 109
Filelnit, 109

If, 106

Inc, 91

Insert, 82
KeepChar, 48
Len, 44

LogDb, 100
LogMsg, 100
LogMsgLF, 100
Lookup, 85
LookupFile, 86

MassChange, 87
NextFile, 110
NextStep, 109
Now, 94
Numeric, 65
Odb, 51
Otherwise, 106
OutCsV, 52
OutEnd, 56
OutFile, 56
OutNull, 56
Output, 56
OutRuler, 57
Overlay, 82
Padded, 49
Parse, 83
ParseName, 44
Plural, 45
Procedure, 106
Que, 66
ReadEOF, 112
ReadFor, 112
ReadNext, 112
ReadUntil, 114

Regular Expressions, 62

Rewind, 114
Rounding, 91
ScanFollow, 87
ScanPosn, 67
SetFromFile, 45
ShowNote, 101
SplitCSV, 46
Stop, 107
TaskDone, 109
Tasklnit, 109
TextToBinary, 98
TrimChar, 49

134

	Introduction
	What is Parse-O-Matic?
	Parse-O-Matic Versus Automatic Converters
	Why You Need Parse-O-Matic — An Example
	Parse-O-Matic to the Rescue!
	How It Works
	Advantages of Parse-O-Matic
	Sample Scripts
	How to Contact Us

	User Interface
	An Integrated Development Environment (IDE)
	Color-coded Development
	Intellisense
	Quick Links, Integrated Reference manuals and Community sections
	Integrated Reference Manual:
	Community Section:
	Solution Files, Projects and Script Files:
	Adding a Solution
	Adding a Project
	Adding a script
	Adding input and output files
	Multi-Script Execution

	Debugger
	Results Log
	Watch List
	Bookmark Window
	Visual Style Options
	IDE Options for tailoring the environment
	Deployables (Enterprise Edition only)
	Exception Handling
	Wildcards
	Stacking Wildcards

	Using the Windows Clipboard
	Using a URL as input

	Scripting
	What is a Script?
	Preparing Your Script
	File Naming Conventions
	Hierarchy

	Scripting Fundamentals
	Values, Literals and Variables
	Array Variables

	Special Variables
	Frequently-Used
	Input/Output
	User Interface
	Miscellaneous
	The $Ignore Variable
	The $Success Variable

	Special Syntax
	Continuation of Long Lines
	Embedding Quotes in Text Literals
	Untypeable Characters

	Free and Advanced Scripting
	Sample Scripts
	About Older Parse-O-Matic Applications
	Equals (Set Variable)
	Len
	ParseName
	Plural
	SetFromFile
	SplitCSV
	Change
	ChangeCase
	KeepChar
	Padded
	TrimChar

	Output Commands
	Odb
	OutCSV
	OutCSV Init
	Outputting a Field
	OutCSV Nulls
	OutCSV Done and Stop
	OutCSV Control
	Turning Fields On and Off
	Changing the Default Quoting State
	Switchable CSV/Columnar Reports
	OutCSV Examples

	OutEnd
	OutFile
	OutNull
	Output
	OutRuler

	Comparators
	Overview
	Types of Comparators
	Literal Comparators
	Examples
	Literal Comparisons and Sort Order

	Numerical Comparators
	Examples
	Numeric Comparisons and Sort Order

	Length Comparators
	Comparing Patterns
	Regular Expressions
	Basic Regular Expressions
	Using the Asterisk
	Advanced Regular Expressions

	Comparison Commands
	Overview
	AlphaNumPatt
	CompareCtrl
	Numeric
	Que

	Positional Commands
	Cols
	FindPosn
	ScanPosn
	The Scanlist
	Accommodating Variation
	Handling Prefixes and Suffixes

	Control Settings
	Last, First and Any
	The “Best Match” Principle

	Finding Patterns with ScanPosn

	Decapsulators
	Overview
	Quick Reference
	A Simple Example
	Why Decapsulators are Necessary
	Introduction to Occurrence Numbers
	Sample Application

	Occurrence Number Syntax
	Finding the First and Last Occurrence
	Finding the Next Occurrence

	Positional Decapsulators
	Negative Positional Decapsulators
	Using Positional Decapsulators Safely

	The Plain Decapsulator
	Unsuccessful Searches
	The Control Setting
	The Null Decapsulator
	Why Null Decapsulators Work Differently

	Overlapping Decapsulators
	Parsing Empty Fields

	Decapsulator Commands
	Overview
	Insert
	Overlay
	Parse
	The “Cut” Control Setting
	The “Relaxed” Control Setting

	Lookup and Database Commands
	Overview
	Lookup
	LookupFile
	MassChange
	ScanFollow
	Advanced Database Connectivity
	SendToDB

	Calculation Commands
	Calc
	CalcReal
	Dec
	Inc
	Rounding
	Overview
	DateTimeFormat
	Date and Time Format Codes
	Examples

	AddDays
	AddWeekDays
	DayOfTheWeek
	Now
	Overview
	Parse-O-Matic Conversion Codes
	BinaryToText
	CalcBinary
	TextToBinary

	Reporting Commands
	Overview
	LogDb
	LogMsg
	LogMsgLF
	ShowNote
	PlaySound

	Flow Control Commands
	Overview
	Again
	Begin
	Break
	Call
	Continue
	Done
	Else
	End
	Exit

	Procedure AdjustPhoneNumber
	If
	Otherwise
	Procedure
	Stop

	Step Control
	Overview
	Using Step Control
	FileInit and FileDone
	TaskInit and TaskDone
	NextStep
	NextFile

	Manual Read Commands
	Overview
	RecLenZero Scripts
	Using Manual Read for Standard Input File Types

	Bookmark
	ReadEOF
	ReadFor
	ReadNext
	ReadUntil
	Rewind

	The Config Section
	Overview
	Sample Script
	Execution of the Config Section
	Commands Available in Config
	The $Cfg Variables
	Optional Input Boxes
	File Names
	File Formats
	Input File Format
	Text Files
	Delimited Files

	HTML/HTTPS/FTP for Input files
	Binary Files
	Output File Format
	Documentation
	ODBC Support (Read/Write)

	Command Line Parameters
	Format of a Command Line File

	Batch Files
	Introduction
	The Error Reporting File
	The Log File

	Unattended Operation
	Multi-User Operation
	Technical Issues

	License & Legal Issues
	Free and Basic Editions
	Business and Enterprise Editions
	Scripts
	Deployables

	Security
	Encryption
	Overview
	Limitations

	Encrypting a Script
	Turning off Encryption
	Security Analysis

	Index

